rf
 Rising Fellow

2024

BASIC RATEMAKING AND RESERVING

(0) Step-by-Step Recipes to Solve CAS Calculation Problems

Exam 5 Cookbook

 2024 SittingRising Fellow

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below.

Published By:
Rising Fellow
United States, TX, 78006
www.RisingFellow.com
Contact: info@RisingFellow.com
Published in the United States

Table of Contents

Table of Contents i
Introduction 1
Werner Ratemaking
Aggregating Exposures 5
Aggregating Blocks of Exposure 11
Uneven Earning Pattern 14
Extension of Exposures 17
Parallelogram Method 20
Premium Development 27
One-step Premium Trend 30
Two-Step Premium Trend 34
Loss Aggregation 38
Extraordinary Losses 42
Direct Effects of Changes in Coverage or Benefits 47
Benefit Change Adjustment 50
Loss Development 54
Two-Step Loss Trend 58
UW Expenses: All Variable Expense Method 65
UW Expenses: Premium-Based Projection Method 70
UW Expenses: Exposure/Policy-Based Projection 75
Indication: Pure Premium Method 81
Indication: Loss Ratio Method 88
Risk Classification: Pure Premium Approach 97
Risk Classification: Loss Ratio Approach 104
Risk Classification: Adjusted Pure Prem Approach 108
Increased Limit Factors 113
Increased Limit Factor: Censored Losses 115
Deductible Pricing and Loss Elimination Ratio 118
Coinsurance and Insurance-to-Value (ITV) 121
Classical Credibility 125
Bühlmann Credibility 128
Complements: Harwayne's Method 130
Complements: Lower Limits Analysis 135
Lifetime Value Analysis 138
Base Rate: Extension of Exposures 143
Base Rate: Approx Average Rate Differential 148
Base Rate: Approx Change in Average Rate Differential 151
ISO Experience 155
NCCI Experience Rating 159
Large Deductible Policies 163
Retrospective Rating 166
Friedland Reserving
Diagnostic Triangles 169
Development Technique 174
Bornhuetter-Ferguson (BF) Technique 180
Cape Cod Technique 185
Frequency-Severity - Development Approach 190
Frequency-Severity - Exposures \& Inflation 196
Frequency-Severity - Disposal Rates 201
Case Outstanding Technique - Approach \#1 208
Case Outstanding Technique - Approach \#2 214
Berquist Sherman: Changes in Case Adequacy 217
Berquist Sherman: Changes in Settlement Rates 225
Salvage \& Subrogation: Ratio Method 232
Reinsurance: Excess of Loss \& Quota Share 238
Stop Loss Reinsurance 243
Actual vs Expected Claim Monitoring 247
Paid ALAE Ratio Method 254
ULAE: Classical Technique 260
Estimating Pure IBNR 264
ULAE: Kittel Refinement 267
ULAE: Conger \& Nolibos (Generalized Kittel) 270
ULAE: Conger \& Nolibos (Simplified Approach) 274
ULAE: Mango-Allen Refinement 277

Introduction

The purpose of the Exam 5 Cookbook is to prepare you to confidently answer calculation-based problems on exam day without wasting time trying to "think through" a problem-solving approach before typing the solution.

Since the 2016 sitting, hundreds of actuaries have used the Exam 7, Exam 8, and Exam 9 Cookbooks to help them pass and get one step closer to their FCAS.

Our goal with Rising Fellow is to help you prepare for the exam with less frustration so that you have your best exam sitting yet!

The Structure

The Exam 5 Cookbook goes through the different calculation-based problem-types that I believe are reasonably testable based on the syllabus. By exam day, you should know how to solve each one.

Inside, you'll find a separate section for each testable problem-type. Each section has the following structure:

Original Practice Problem

Each section has an original practice problem that demonstrates the problem-type. I wrote these based off of the syllabus papers to have a similar difficulty-level and style to what you might see on an exam.

Solution Recipe

The solution recipe solves the practice problem from start to finish and shows the step-by-step approach you should take to answer a similar problem. For each step, you'll see:

- The description for what to do in the step
- The formula(s) necessary for the step
- The formula(s) translated from symbolic notation to plain-English
- Calculations for the step to solve the example problem

Discussion

Each section includes discussion to add clarity and more context. The discussion also covers underlying concepts that might come up on a part b or part c essay question.

For many problems, I point out potential "twists" that could show up on the exam that would make an exam problem more difficult. Since you've taken actuarial exams up to this point, you know that straightforward exam problems are more the exception than the rule.

CBT Spreadsheet Tips

This new section provides Excel formulas and tips for how to solve a problem more efficiently in the computer-based testing (CBT) PearsonVue spreadsheet environment. There are many types of problems where setting up your solution intelligently and taking advantage of the spreadsheet capabilities such as SUMIF(), COUNTIF(), and array formulas, will save you valuable time on the exam.

Source

Each section references the pages in the syllabus reading that you can cross-reference for more information and details. Make sure to check the syllabus section for more context if you get stuck on a problem or to see how the author discusses the concepts.

More Practice

Here, you'll see references to past CAS problems. You'll find this helpful especially closer to the exam if there are particular types of problems that you are struggling with. This section includes references to CAS problems from the 2015-2019 exams.

How to Best Use the Exam 5 Cookbook

Below is a suggested guide for how you can incorporate the Exam 5 Cookbook in your own study schedule along with the syllabus material and a typical study manual. This is the general approach that I used when I took my fellowship exams.

For each of those exams I had a main study manual as well as the Exam Cookbook, which I built out while I studied for the exam (but you don't need to waste time doing that part!)

First pass through the syllabus

While you're reading a particular paper in the syllabus and your main study manual to learn the material, use the Exam 5 Cookbook to clearly identify what problem-types you need to know from the paper. Study the steps in the solution recipe to learn how to solve the problem-types. Make sure to do some practice problems as you go through the syllabus. This will help you learn faster.

Second pass through the syllabus

Review the steps for the problem-types and make sure you have an intuitive understanding of how to solve the problems. Start working the past CAS problems.

The first level of understanding is to be able to follow the recipe and understand the steps and calculations.
The next level of understanding is to be able to recall and apply the steps to solve a problem without relying on study material. During your second pass, focus on building this deeper level of understanding.

Review and Practice Problems (around 6 weeks to 2 weeks before the exam)

At this point you should have a good understanding of the syllabus and how to use the recipe steps to systematically solve the different calculation problems. During this period, you should be doing lots of problems across the syllabus and targeting problem-types that you are finding particularly challenging.
By the end of this phase, you might not have all the formulas memorized, but you should know all the steps and how to apply them to solve problems without needing to think too much before beginning to write the solution.

During this phase, make sure to focus on the types of problems and concepts that you're weak at. This may require some struggle, but struggling with some of the challenging problems will help you master these concepts.

You also should continue building your understanding of the concepts and preparing for essay and more complicated integrative questions. I found it helpful to create flashcards from the papers as well as to reread sections of the syllabus papers that appear to be likely sources of essay problems.

Final Weeks

In the final weeks, focus on taking practice exams to see problems from the entire syllabus. When taking practice exams, work on your exam strategy to make sure you're able to finish the exam and maximize your points.

Prepare for essay problems in the final weeks by using flashcards to make sure that you know all the details necessary. An approach I found helpful is to say flashcards out loud and to explain the flashcard response in my own words as if I were teaching someone. It sounds weird, but it is a much more efficient way to learn and memorize than simply scanning the front and back of the flashcard.

Prepare for calculation problems by reviewing the recipes in the Exam 5 Cookbook in a similar fashion to how you use flashcards for essay problems. Using this approach on my fellowship exams, I was able to rapidly review the steps and formulas for how to solve each problem-type that might show up on the exam. This was a huge benefit and gave me a lot of confidence going into the exam.

Exam Day

I used the original Exam Cookbooks together with a traditional study manual using the approach above to take my fellowship exams. On exam day, for almost every calculation problem I was able to start writing the solution without wasting time trying to think through how to solve the problem. I had an intuitive understanding of how to solve each of the problems following the step-by-step recipes.

If you follow this approach, you should be able to develop a similar level of understanding and confidence going into the exam room.

Excel Version for Computer-Based Testing Preparation

For each recipe, there is an accompanying Excel version. Make sure to review those so that you know how to solve problems in the spreadsheet format. The CBT Spreadsheet Tips sections and the Excel version showing the formulas and setup for the spreadsheet solution will help you understand how to solve exam problems in the PearsonVue spreadsheet environment.

Errata

I always hated seeing errors in study manuals when I studied for exams, so I make every effort to ensure the study materials are accurate. Nevertheless, there may still be some errors in the final version, so I keep an updated errata. Please make sure to check it regularly for any fixes. The link is below:

https://risingfellow.com/errata

If you find any errors, please send me a message using the contact form on the Errata page so that I can make a correction.

Feedback

I am always working to improve the Exam 5 Cookbook and the rest of the Rising Fellow study material. Please send me an email to exam5@RisingFellow.com if you have feedback about any of the following:

- Recipes or sections that are confusing or could be improved
- New recipes I should include in future versions
- Better ways you've found to solve a problem-type in a spreadsheet
- Any comments or other feedback you have

Good luck as you start studying and I hope this will be your best sitting yet.

Aggregating Exposures

Werner Ratemaking Ch. 4

Problem

Given the following automobile policy information, at policy inception, for an insurance company that writes 6 -month and 12 -month policies:

Policy	Effective Date	Expiration Date	\# Autos on policy
A	$10 / 1 / 20$	$3 / 31 / 21$	1
B	$4 / 1 / 21$	$3 / 31 / 22$	3
C	$7 / 1 / 21$	$6 / 30 / 22$	2
D	$8 / 1 / 21$	$1 / 31 / 22$	2
E	$1 / 1 / 22$	$6 / 30 / 22$	1
F	$4 / 1 / 22$	$3 / 31 / 23$	2

The exposure base is car-years and the probability of a claim is evenly distributed through the year.
The following policy changes occurred during the policy effective period:

- Policy B: Canceled on $1 / 1 / 22$
- Policy C: One of the autos was removed from the policy on $4 / 1 / 22$
- Policy E: Canceled on $3 / 31 / 22$

Assume there are no other policies written between 2020 and 2022
a. Calculate the 2021 and 2022 written exposures as of $12 / 31 / 22$ both aggregated by calendar year and policy year.
b. Calculate the 2021 and 2022 earned exposures as of $12 / 31 / 22$ both aggregated by calendar year and policy year.
c. Calculate the 2021 and 2022 unearned exposures as of $12 / 31 / 22$ both aggregated by calendar year and policy year.
d. Calculate the 2021 and 2022 in-force exposures as of $2 / 15 / 22$ with insured units defined as:

- Automobile units exposed to loss
- Written exposures

Solution Recipe

Part a - Written Exposures

Written exposures - The total exposures on policies written during the time period, based on their effective date.

1) For Calendar Year, exposures are aggregated by transaction date. Policy cancelations will record a negative partial exposure for the portion of the policy canceled for the calendar year of the transaction date.

Written Exposures $=\#$ Exposures \times Policy Length	Written Exposures $S_{B, C Y} 2021$	$=3 \times 1$
	$=3.0$	

Note: Exposure base is car-years, so the policy length is the term-length in years (0.5 years, 1 year, etc.).
Written Exposures

Policy	CY 2021	CY 2022	Comments
A	-	-	Effective date in 2020
B	3.00	-0.75	Canceled in CY 2022 with 3 months remaining
C	2.00	-0.25	1 auto removed with 3 months remaining
D	1.00	-	6-month policy, so each auto is worth 0.5 car-years
E	-	0.25	6-month policy written 2022, canceled halfway through
F	-	2.00	Annual policy written 2022
Total	6.00	1.25	

Note: For policy C, an alternative way to calculate the CY 2022 written exposure is that 3 months of the original policy is canceled ($-2 * 3 / 12$) and the newly modified policy has 3 months remaining with 1 autos $(+1 * 3 / 12)$. The sum is -0.25 car-years.
2) For Policy Year, exposures are aggregated by policy effective date. Therefore, policy cancelations will record a negative partial exposure for the portion of the policy canceled for the calendar year of the transaction date.

$$
\begin{aligned}
\text { Written Exposures }_{B, P Y 2021} & =3 \times 1-3 \times \frac{3}{12} \\
& =2.25 \\
\text { Written Exposures }_{E, P Y 2022} & =1 \times 0.5-1 \times 0.5 \times \frac{3}{6} \\
& =0.25
\end{aligned}
$$

	Written Exposures		
Policy	PY 2021	PY 2022	Comments
A	-	-	
B	2.25	-	Cancelation contributes to PY 2021 (original effective date) Modification contributes to PY 2021 (original policy effective date)
C	1.75	-	
D	1.00	-	-
E	-	0.25	
F	-	2.00	
Total	5.00	2.25	

Part b-Earned exposures

Earned exposures - The portion of written exposures for which coverage has already been provided as of a point of time.
3) For Calendar Year, earned exposure is based on the portion of the policy term used up aggregated by calendar year. This assumes the probability of a claim is evenly distributed throughout the year (an even earning pattern).

Earned Exposures

Policy	CY 2021	CY 2022	Comments
A	0.25	-	Written in 2020, but in effect for 3 months of 2021
B	2.25	-	Canceled on 1/1/22
C	1.00	0.75	1 auto removed with 3 months remaining
D	0.83	0.17	2 autos earned (5 months in 2021 and 1 month in 2022)
E	-	0.25	Canceled on 3/31/22, so only 3-months earned
F	-	1.50	9 months earned in 2022
Total	4.33	2.67	

4) For Policy Year, earned exposure is based on the portion of the policy term used up by the as-of date and contributes to the policy year corresponding to the policy effective date.
Earned Exposures EPY $2022=2 \times \frac{9}{12}$

$$
=1.50
$$

Earned Exposures

Policy	PY 2021	PY 2022	Comments
A	-	-	Policy effective date is in PY 2020
-B	2.25	-	Policies B, C and D contribute to PY 2021
C	1.75	-	
D	1.00	-	
E	-	0.25	Policies E and F contribute to PY 2021
F	-	1.50	9 months earned by the as of date of 12/31/22
Total	5.00	1.75	

Part c - Unearned exposures

Unearned exposures - The portion of written exposures for which coverage has not yet been provided. For a single policy, it's the difference between written and earned exposure at a point in time.
5) For Calendar Year, unearned exposure is the difference between written exposure and earned exposure for a given calendar year plus unearned exposures as of the beginning of the calendar year.

$$
\text { CY Unearned }_{\text {End } C Y}=\text { CY Written }- \text { CY Earned }+ \text { CY Unearned } \text { Beg. } C Y
$$

\[

\]

Note: To calculate CY 2021 Unearned Exposures, we need the Unearned Exposures at the beginning of the year, the CY 2020 Unearned Exposures. By the end of CY 2020, the only unearned exposure is from the 3 months remaining of Policy A which is earned in CY 2021.
6) For Policy Year, unearned exposure is the difference between written exposure and earned exposure for a given policy year.

$$
\text { Written Exposures }=\text { Earned Exposures }+ \text { Unearned Exposures }
$$

$$
\begin{aligned}
\text { Unearned }_{\text {PY 2022 }} & =2.25-1.75 \\
& =0.50 \\
&
\end{aligned}
$$

Note: Policy A is effective in 2020, so it contributes to PY 2020 and can be ignored. As of 12/31/22, PY 2021 is fully earned (written exposures = earned exposures), so unearned exposure is zero. For PY 2022, the only unearned exposure as of $12 / 31 / 22$ is 3 months remaining of policy F with two exposures.

Part d - In-force exposures

In-force exposures - The number of insured units exposed to claims at a given point in time for policies that are in force.
7) Sum up the number of exposed units on policies that are in-force as of the given date. Include policies where the "as of" date is after the policy effective date and before expiration or cancelation date.

	$\underline{\text { In-Force }}$	Comments
Policy	$2 / 15 / 22$	Expired
A	-	Canceled before 2/15/22
B	-	1 auto was removed on 4/1/22, after 2/15/22
C	2.00	Expired
D	-	
E	1.00	
F	-	Written after 2 $2 / 15 / 22$
Total	3.00	

8) For in-force "written exposures", sum up the written exposures on policies that are in-force as of the given date.

	$\underline{\text { In-Force }}$	Comments
Policy	$2 / 15 / 22$	Expired
A	-	
B	-	
C	2.00	At $2 / 15 / 22$ policy C has 2 written car-years
D	-	Expired
E	0.50	6-month policy, so each auto is 0.5 written car-years
F	-	Written after $2 / 15 / 22$
Total	2.50	

Discussion

Questions about aggregating exposures are straight-forward but it's easy to overlook some of the details and make a mistake.

There are two main ways to aggregate exposures, by policy year and by calendar (accident) year.

- Policy year exposures are aggregated according to the original policy effective date
- Calendar year exposures are aggregated based on the transaction date.

A key thing to remember is that at the end of a year, calendar year exposures are fixed. In contrast, policy year exposures aren't fixed until all policies written during the year expire (24 months after the start of the policy year for annual policies).

Possible Problem Modifications

- Uneven earning pattern (e.g. for watercraft where most claims occur in summer)
- Calculate earned exposures based on the \% of the exposure earning pattern used
- Semi-annual policies
- Each policy counts as 50% of a written exposure (0.5 years)
- Policy cancelations and modifications
- Calendar Year: The written exposure for the cancelation/modification contributes to the calendar year of the transaction date
- Policy Year: The written exposure for the cancelation/modification contributes to the policy year of the original policy effective date

Aggregating Premium for Individual Policies

Aggregating Premium for Individual policies is done almost entirely the same. The only real difference is that premium is used instead of exposures. Also, for in-force premium, it's important to use the full-term premium for the policy that is in-force at the as of date.

Criteria for Exposure Bases

Proportional to Expected Loss - The exposure base should be directly proportional to loss.
Practical - The exposure base should be well-defined, objective and relatively easy/inexpensive to measure and verify.

Historical Precedence - Because of the difficulties of implementing a new exposure base (large premium swings for insureds, changing the rating algorithm, and requiring data adjustments for future analyses), a good exposure base should have historical precedence.

Source

Werner Ratemaking Ch. 4 - pg. 51-61

More Practice

CAS Fall 2019 - 2
CAS Spring 2019-1
CAS Spring 2018-1
CAS Spring 2018 Makeup - 1
CAS Fall 2018-2
CAS Fall 2017 - 3
CAS Spring 2017-1
CAS Spring 2016-2
CAS Fall 2015-1
CAS Fall 2014-2

Aggregating Blocks of Exposure

Werner Ratemaking Ch. 4

Problem

Given the following written exposures for a company summarized by month as of $3 / 31 / 24$:

Month	Written Exposures
Jan-23	192
Feb-23	192
Mar-23	184
Apr-23	190
May-23	191
Jun-23	185
Jul-23	191
Aug-23	195
Sep-23	193
Oct-23	191
Nov-23	190
Dec-23	195
Jan-24	204
Feb-24	203
Mar-24	200

- Exposures are written uniformly during each month
- All policies have an annual policy term
- Assume no policies were written prior to $1 / 1 / 23$.

Calculate the earned exposures for calendar year 2023 and policy year 2023 as of 3/31/24.

Solution Recipe

1) Calculate earned exposures for a block of policies as if the entire block was written on the midpoint of the time period. This is the assumed effective date. Determine the $\%$ earned as the portion of the year between the assumed effective date and the end of the calendar year.

$$
\begin{aligned}
& \text { Assumed Effective Date }=\text { Time Period Mid-Point } \\
& \text { CY Earned Exposures }=\# \text { Exposures } \times \% \text { Earned }
\end{aligned}
$$

$$
\begin{aligned}
\text { CY Earned Premium }_{\text {Jan-23 }} & =192 \times 96 \% \\
& =184
\end{aligned}
$$

Calendar Year and Month	Assumed Effective Date	Written Exposures	\% Earned	Calendar Year 2023 Exposures
Jan-23	$1 / 15 / 23$	192	96%	184.00
Feb-23	$2 / 15 / 23$	192	88%	168.00
Mar-23	$3 / 15 / 23$	184	79%	145.67
Apr-23	$4 / 15 / 23$	190	71%	134.58
May-23	$5 / 15 / 23$	191	63%	119.38
Jun-23	$6 / 15 / 23$	185	54%	100.21
Jul-23	$7 / 15 / 23$	191	46%	87.54
Aug-23	$8 / 15 / 23$	195	38%	73.13
Sep-23	$9 / 15 / 23$	193	29%	56.29
Oct-23	$10 / 15 / 23$	191	21%	39.79
Nov-23	$11 / 15 / 23$	190	13%	23.75
Dec-23	$12 / 15 / 23$	195	4%	8.12
Total				1,140

Note: Because the problem assumes no policies are written before $1 / 1 / 23$, we don't need to calculate the amount of calendar year 2023 earned premium from policies written in 2022.
2) For policy year, calculate earned exposures for a block of policies between the mid-point of the time period and the as-of date.

$$
\text { PY Earned Exposures }=\# \text { Exposures } \times \% \text { Earned by as -of-date }
$$

$$
\begin{aligned}
\text { PY Earned Premium }_{J a n-23} & =192 \times 100 \% \\
& =192
\end{aligned}
$$

Policy Year and Month	Assumed Effective Date	Written Exposures	\% Earned	Policy Year 2023 Exposures
Ean-23	$1 / 15 / 23$	192	100%	192.00
Feb-23	$2 / 15 / 23$	192	100%	192.00
Mar-23	$3 / 15 / 23$	184	100%	184.00
Apr-23	$4 / 15 / 23$	190	96%	182.08
May-23	$5 / 15 / 23$	191	88%	167.13
Jun-23	$6 / 15 / 23$	185	79%	146.46
Jul-23	$7 / 15 / 23$	191	71%	135.29
Aug-23	$8 / 15 / 23$	195	63%	121.88
Sep-23	$9 / 15 / 23$	193	54%	104.54
Oct-23	$10 / 15 / 23$	191	46%	87.54
Nov-23	$11 / 15 / 23$	190	38%	71.25
Dec-23	$12 / 15 / 23$	195	29%	56.88
Total				1,641

Note:

Mar-23 policies and prior are 100\% earned by 3/31/24.
Apr-23 policies have an assumed effective date of 4/15/23 and have a $\%$ earned of ($=23 / 24$) by 3/31/24.

Discussion

As long as policies are uniformly written during each time period, this method is a good approximation. The longer the time periods (quarters or years), the less likely that this assumption is appropriate.

This approach is necessary if data is summarized. With greater computational power these days, it's more realistic to aggregate exposures looking at the individual policy data. That would be more accurate than using blocks of exposures.

Note that aggregating premium using blocks of policies is done the same way as above, just with premium numbers.

CBT Spreadsheet Tips

For the \%Earned, start with the first \%Earned (=23/24 for January 2023) and subtract $1 / 12$ for each subsequent value. This is much quicker than manually typing in $23 / 24,21 / 24,19 / 24 \ldots$ for the whole series.

Source

Werner Ratemaking - pg. 60-61

More Practice

CAS Fall 2016-1
CAS Spring 2015-3

Uneven Earning Pattern

Werner Ratemaking Ch. 5

Problem

Given the following for an insurer writing Recreational Vehicle (RV) insurance as of 3/31/2024:

Calendar Year and Quarter	Written Premium
2022 Q1	182
2022 Q 2	765
2022 Q 3	707
2022 Q 4	155
2023 Q 1	208
2023 Q 2	842
2023 Q 3	735
2023 Q 4	98

Earning Pattern	
Quarter	\%Earned
Q1	10%
Q2	40%
Q3	40%
Q4	10%

- Policies are written uniformly during each quarter
- There are no policy cancellations or modifications
- All policies are annual
- The company began writing the RV line of business on $1 / 1 / 22$
a. Calculate the 2022 and 2023 earned premium as of $3 / 31 / 2024$ both aggregated by:
i. Calendar year and quarter
ii. Policy year and quarter
b. Calculate the 2022 and 2023 unearned premium as of $3 / 31 / 2024$ both aggregated by:
i. Calendar year and quarter
ii. Policy year and quarter

Solution Recipe

Part a - Earned premium with uneven earning pattern

1) For calendar quarter, calculate the earned premium as the exposed written premium that is earned during the quarter based on the earning pattern. With blocks of premium (or exposures), treat the policies as if they were written at the mid-point of the time period.

$$
\text { CY Earned Premium }=\sum_{\substack{\text { Exposed } \\ \text { Policies }}} \text { Written Premium } \times \% \text { Earned in time period }
$$

	Calendar Quarter Earned Premium		
Calendar Year and Quarter	Average Written Date	Written Premium	Earned Premium
	$2 / 15 / 22$	182	9.10
2022 Q 2	$5 / 15 / 22$	765	225.80
2022 Q 3	$8 / 15 / 22$	707	520.20
2022 Q 4	$11 / 15 / 22$	155	173.15
$2023 \mathrm{Q1}$	$2 / 15 / 23$	208	182.20
2023 Q 2	$5 / 15 / 23$	842	749.40
2023 Q 3	$8 / 15 / 23$	735	770.40
2023 Q 4	$11 / 15 / 23$	98	191.15

Notes:

- $2022 \mathrm{Q} 1-2022 \mathrm{Q} 1$ written premium is exposed for 50% of Q 1 .
- 2022 Q2-2022 Q1 written premium is exposed for 100% of Q2 and 2022 Q2 written premium is exposed for 50% of Q 2 .
- 2022 Q3-2022 Q1 \& Q2 written premium is exposed for 100% of Q3 and 2022 Q3 written premium is exposed for 50% of Q3.

2) For policy quarter, calculate earned premium as the written premium that is earned by the as of date based on the earning pattern for policies effective during the quarter. With blocks of premium (or exposures), treat the policies as if they were written at the mid-point of the time period.

$$
\text { PY Earned Premium }=\text { PY Written Premium } \times \% \text { Earned by as of date }
$$

Policy Quarter Earned Premium as of $3 / 31 / 24$

Policy Year and Quarter	Average Written Date	Written Premium	Earned Premium
2022 Q1	$2 / 15 / 22$	182	182
2022 Q2	$5 / 15 / 22$	765	765
2022 Q3	$8 / 15 / 22$	707	707
2022 Q4	$11 / 15 / 22$	155	155
2023 Q1	$2 / 15 / 23$	208	208
2023 Q2	$5 / 15 / 23$	842	673.60
2023 Q3	$8 / 15 / 23$	735	294.00
2023 Q4	$11 / 15 / 23$	98	14.70

Notes:

- By $3 / 31 / 24$, all policies written on or before $3 / 31 / 23$ have been fully earned and expired.
- 2023 Q2 - By 3/31/24, this policy block has been exposed for 50% of 2023 Q2 and 100% of 2023 Q3, Q4 and 2024 Q1.
- 2023 Q3 - By 3/31/24, this policy block has been exposed for 50% of 2023 Q3 and 100% of 2023 Q4 and 2024 Q1.

Part b-Unearned premium with uneven earning pattern

3) For Calendar Year, unearned premium is the difference between written premium and earned premium for a given calendar year plus unearned premium as of the beginning of the calendar year.
```
CY Unearned Prem End CY = CY Written Prem - CY Earned Prem + CY Unearned Prem }\mp@subsup{\mathrm{ Beg. CY}}{}{\prime
```

Calendar Year	Unearned Premium
2022	881
2023	871

Note:
The company started writing RV policies on $1 / 1 / 22$, so there is no unearned premium at the beginning of CY 2022.
4) For Policy Year, unearned premium is the difference between written premium and earned premium for a given policy year evaluated at the as of date.

Written Exposures $=$ Earned Exposures + Unearned Exposures

Policy Year	Unearned Premium	By $3 / 31 / 24$, all 2022 2023
693	202 policies have been fully earned	

Discussion

The text doesn't show any numerical examples, but does discuss this concept and it has been asked on past exams. The approach is the same for both earned exposures and earned premium using an uneven earning pattern.

Lines of business like recreational vehicle, boat owners, and warranty don't have an equal probability of loss over the whole policy term. Exposures and premiums for lines of business with seasonal fluctuations (like RV and boat owners) will have an uneven earning pattern. In the problem here, recreational vehicles are most susceptible to loss over Q2 and Q3.

With an uneven earning pattern, you must calculate the earned exposures and premium using the earning pattern, not using the percent of the policy term length exposed.

Source

Werner Ratemaking Ch. 5 - pg. 55-57, 68-70

More Practice

CAS Fall 2019-1

Extension of Exposures

Werner Ratemaking Ch. 5

Problem

An insurance company writes annual policies and has the following historical policies in the experience period grouped by rating characteristics for an indicated rate review as of $3 / 31 / 23$:

- Policies are written uniformly throughout each year

Policy Effective Dates	Number of Policies	Number of Exposures	Territory	Class
	129	774	A	X
Jan 1, 2021 - Dec 31, 2021	74	296	A	Y
	68	476	B	X
	31	155	B	Y
	133	798	A	X
Jan 1, 2022 - Dec 31, 2022	78	390	A	Y
	76	456	B	X
	35	210	B	Y

The current rating algorithm as of $3 / 31 / 23$ is:
Premium $=$ Exposure \times Rate per Exposure \times Territory Factor \times Class Factor + Policy Fee

- Base rate per exposure $\$ 350$
- Current policy fee \$200 per policy

Territory	Rating Factor
A	1.00
B	1.43

Class	Rating Factor
X	1.00
Y	0.78

Calculate the on-level earned premium for Calendar Year 2022 using the extension of exposures method.

Solution Recipe

Part a - Written premium at current rate level with extension of exposures

1) Rerate all policies in the experience period using the current rating algorithm to restate the historical premium at current rate levels. Make sure to apply the correct class factors to each policy.

$$
\text { Premium }=\text { Exposure } \times \text { Rate per Exposure } \times \prod_{i=1}^{n} \text { Class Factors }_{i}+\text { Policy Fee }
$$

$$
\begin{aligned}
\text { Premium }_{2021, \text { Terr A,Class } Y} & =296 \times \$ 350 \times 1.00 \times 0.78+\$ 200 \times 74 \\
& =95,608
\end{aligned}
$$

In Excel

Use VLOOKUP() to look up the correct class rating factors for a policy group:
Class Factor ${ }_{i}=$ VLOOKUP(Classi, rating factor table, rating factor column \#, FALSE)

Effective Year	Territory	Class	Premium at CRL
2021	A	X	296,700
2021	A	Y	95,608
2021	B	X	251,838
2021	B	Y	66,710
2022	A	X	305,900
2022	A	Y	122,070
2022	B	X	243,428
2022	B	Y	88,982

2) Aggregate the on-level written premium by calendar year based on the policy effective date.

$$
\begin{aligned}
\text { Premium }_{2021} & =296,700+95,608+251,838+66,710 \\
& =710,856
\end{aligned}
$$

In Excel
Written Premium = SUMIF(effective year, calendar year criteria, premium at CRL)

Calendar Year	Written Premium at CRL
2021	710,856
2022	760,380

3) Determine the percentage of each policy year that is earned in the calendar year and calculate the aggregate on-level earned premium.

CY Earned Premium $=\sum$ Written Premium $\times \%$ Earned in time period Avg Factor

$$
\begin{array}{rlc|c}
\text { CY Earned Prem } & 2022 & =710,856 \times 50 \%+760,380 \times 50 \% & \text { Effective Year } \\
\cline { 3 - 4 } & \text { \% in CY } 2022 \\
\hline & 735,618 & 2021 & 50 \% \\
& 2022 & 50 \%
\end{array}
$$

Note:
The average written date for the block of policies effective in 2021 is $7 / 1 / 21$. Since these are annual policies, 50% is earned in calendar year 2021 and 50% is earned in calendar year 2022.

Discussion

The key idea of the extension of exposures method is to rerate all policies written in the historical experience period with the current rating algorithm. This restates the historical premium to current rates.

The extension of exposures method has the following advantages and disadvantages:

Advantages

- Most accurate current rate level method

Disadvantages

- Requires detailed data - rating characteristics for all policies in the historical period
- Difficult to determine what subjective debits/credits would be applied under current rating guidelines

Possible Problem Modifications

- Different rating algorithm used
- The problem should clearly state the rating algorithm
- Given rating factors at different effective dates
- Make sure to use the latest rating factors
- 6-month policies used
- Make sure to apply the rating algorithm and aggregate earned premium correctly

CBT Spreadsheet Tips

For this type of problem, using VLOOKUP() to look up rating factors for a given rating characteristic and SUMIF () to aggregate premium by year may be helpful on the exam. Of course, you can always reference rating factors and aggregate premium by year manually if it's a very simple problem.

SUMPRODUCT(array 1 , array $2, \ldots$) makes it easy to help calculate weighted averages or the sum of a product of multiple arrays in one step.

Source

Werner Ratemaking Ch. 5 - pg. 72-73

More Practice

CAS Fall 2018-3
CAS Fall 2015-1
CAS Fall 2014-3
CAS Fall 2013-2

Parallelogram Method

Werner Ratemaking Ch. 5

Problem

Given the following historical premium and rate changes for an insurer:

Historical Premium

Calendar Year	Earned Premium
2020	870,000
2021	935,000
2022	980,000

Rate Change History	
Effective Date	Overall Average Rate Change
$4 / 1 / 20$	3%
$7 / 1 / 21$	12%
$7 / 1 / 22$	-2%

- All policies are annual-term policies
- Policies are written uniformly over the year
a. Calculate the earned premium at current rate level for Calendar Years 2020-2022.
b. Calculate the appropriate on-level factors for Policy Years 2020-2022.

Solution Recipe

Part a - Calendar Year Parallelogram Method

1) Determine the rate level groups based on the rate change history and calculate the cumulative rate level index for each group.

$$
\begin{gathered}
\text { CRL Index }_{1}=1.00 \\
\text { CRL Index }_{i}=\text { CRL Index }_{i-1} \times\left(1+\text { rate change }_{i}\right)
\end{gathered}
$$

$$
\begin{aligned}
\text { CRL Index }_{2} & =1.00 \times(1+0.03) \\
& =1.030
\end{aligned}
$$

Rate Level Group	Effective Date	Cum. Rate Level Index
1	Initial	1.000
2	$4 / 1 / 20$	1.030
3	$7 / 1 / 21$	1.154
4	$7 / 1 / 22$	1.131

2) Calculate the portion of each calendar year's earned premium that was earned during each rate level group. Use a calendar year earned premium diagram with the rate changes to help with this.

$$
\begin{aligned}
& \text { Area of a triangle }=1 / 2 \times \text { base } \times \text { height } \\
& \text { Area of a parallelogram }=\text { base } \times \text { height } \\
& \text { Area of a trapezoid }=1 / 2 \times\left(\text { base }_{1}+\text { base }_{2}\right) \times \text { height }
\end{aligned}
$$

3) Calculate the weighted average cumulative rate level index for each year.

$$
\text { Average CRL Index }=\sum \% E P \text { in Rate Level Group }{ }_{i} \times C R L \text { Index } x_{i}
$$

$$
\begin{aligned}
& \% \text { EP in Rate Level Group }{ }_{C Y} 2020, \text { Group } 1=1-0.5 \times 0.75^{2} \\
& \text { = 71.88\% } \\
& \text { Average CRL Index } \text { CY } 2020=71.88 \% \times 1.000+28.13 \% \times 1.030 \\
& =1.0084
\end{aligned}
$$

In Excel

Average CRL Index $=$ SUMPRODUCT (\%EP in rate level groups, CRL Indices of rate level groups)

| Calendar
 Year | Portion of EP in Each Rate Level Group | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |$|$| Average |
| :---: |
| |
| 2020 |

Note: As a quick reasonability check, the sum of the portion of EP in each row should be 100%.
4) Calculate the on-level factor for each year as the cumulative rate level index for the current group divided by the weighted average rate level index for the year.

| On-Level Factor $=\frac{\text { Current CRL Index }}{\text { Average CRL Index }}$ |
| ---: | ---: |\quad| On-Level Factor ${ }_{2020}$ | $=\frac{1.131}{1.0084}$ |
| ---: | :--- |
| | $=1.1211$ |

Calendar Year	On-Level Factor
2020	1.1211
2021	1.0823
2022	0.9958

Note: Make sure to use the CRL Index for the current rate level group (1.131 for group 4 here), not the weighted average CRL index for the latest historical year.
5) Apply the on-level factor to the earned premium for the appropriate year to calculate the on-level earned premium.

$$
\text { On-Level EP }=\text { On-Level Factor } \times \text { Earned Premium }
$$

$$
\begin{aligned}
\text { On-Level } E P_{2020} & =1.1211 \times 870,000 \\
& =975,330
\end{aligned}
$$

Calendar Year	On-Level Earned Prem
2020	975,330
2021	$1,011,997$
2022	975,910

Part b - Policy Year Parallelogram Method

6) Redo steps 2-4 to get the on-level factors for policy years. The key difference is that the portion of each policy year's earned premium in the rate level groups will be different than for calendar year. Use a policy year earned premium diagram to help.

$\% E P$ in Rate Level Group ${ }_{P Y} 2020$, Group $_{1}=1 \times 0.25=25 \%$
Average CRL Index $_{\text {CY } 2020}=25 \% \times 1.000+75 \% \times 1.030=1.0225$
On-Level Factor ${ }_{2020}=\frac{1.131}{1.0225}=1.1057$

Policy Year	Portion of EP in Each Rate Level Group				Average CRL Index	On-Level Factor
	1	2	3	4		
2020	25\%	75\%			1.0225	1.1057
2021		50\%	50\%		1.0918	1.0355
2022			50\%	50\%	1.1421	0.9899
CRL Index	1.000	1.030	1.154	1.131		

Discussion

The parallelogram method works at the aggregate level to adjust historical premium to current rate level. This is a significant difference compared to the Extension of Exposures method which rerates all policies to current rates at the policy level.

The tricky part in a parallelogram method problem is calculating the portion of earned premium in each rate level group. For policy years, this is easy for normal rate changes, but it requires some geometry for calendar year on-leveling. I would sketch a quick earned premium diagram to help and avoid mistakes.

Problem Variations

There are three main ways a parallelogram method can be modified:

- Calendar year vs. policy year (or months/quarters)
- 12-Month vs. 6-Month policy terms
- Rate changes affect: policies written after the change vs. policies midterm

For each variation, the same general approach as above is used with some modification.

Two Problems with the Parallelogram Method

Problem 1 - Assumes policies are written evenly throughout the year

- This assumption isn't always valid, especially for seasonal lines of business like boat owners insurance.
- The parallelogram method can still be used with more refined time periods like months or quarters.

Another approach is to use the actual distribution of writings during the year to more accurately determine the portion of earned premium in each rate level group (step 2). The paper doesn't go into this approach.

Problem 2 - Applies at the aggregate level with overall average rate changes

- If rate changes varied by class (class factors were modified), then premium at the class level won't be properly on-leveled. This means the adjusted premium won't be acceptable for classification ratemaking analysis.

Calendar Year Parallelogram Method for 6-Month Policies

For 6-month policies, rate changes are fully realized over 6 months instead of 12 months. To on-level calendar year earned premium, make sure to calculate the portion of earned premium in each rate level group correctly (step 2) since the geometry is different.

Example:

For the same problem above, assuming all policies have 6-month terms, this is how to solve for the on-level factors:

Calendar Year	Portion of EP in Each Rate Level Group				Average CRL Index	On-Level Factor
	1	2	3	4		
2020	50\%	50\%			1.0150	1.1138
2021		75\%	25\%		1.0609	1.0656
2022			75\%	25\%	1.1478	0.9849
CRL Index	1.000	1.030	1.154	1.131		

For policy years with 6-month terms, you get the same answer as in part b of the problem above. The diagram will look a different since policy years are fully earned after only 18 months, but the portion of earned premium in each rate level group is the same. You can set up an earned premium diagram to see why.

Rate Changes Affecting Policies Midterm (Mandated by Law)

A rate change mandated by law that affects ALL policies on or after the a specific date, including in-force policies, must be handled differently. It's represented as a vertical line on an earned premium diagram and will split one or more rate level groups.

Be careful when calculating the cumulative rate level indexes and the portion of earned premium in each group and sub-group.

Example:

Calculate the on-level factors for the same problem as part a, but with a mandated rate change of -4% on $1 / 1 / 22$ affecting all policies midterm.
$\left.\begin{array}{c|cc}\begin{array}{c}\text { Rate Level } \\ \text { Group }\end{array} & \begin{array}{c}\text { Effective } \\ \text { Date }\end{array} & \begin{array}{c}\text { Cum. Rate } \\ \text { Level Index }\end{array} \\ \hline 1 & \text { Initial } & 1.000 \\ 2 \mathrm{a} & 4 / 1 / 20 & 1.030 \\ 3 \mathrm{a} & 7 / 1 / 21 & 1.154 \\ \text { 2b } & 1 / 1 / 22 & 0.989 \\ 3 \mathrm{~b} & 1 / 1 / 22 & 1.107 \\ \hline 4 & 7 / 1 / 22 & 1.085\end{array}\right\}$ Before midterm rate change

Calendar	Portion of EP in Each Rate Level Group					Average	On-Level Year	1

CBT Spreadsheet Tips

Use SUMPRODUCT() to help calculate the weighted average rate level index for each year:
Average CRL Index = SUMPRODUCT(\%EP in rate level groups , CRL Indices of rate level groups)

It is possible to set up formulas to directly calculate the portion of earned premium in each rate level group using YEARFRAC(start date, end date) formulas and the rate level effective dates. However, it requires complicated Excel formulas that are tricky to set up. On an exam, I think it's faster to sketch a quick diagram on scratch paper and use geometry as shown above.

Source

Werner Ratemaking Ch. 5 - pg. 73-80

More Practice

CAS Spring 2019-2
CAS Fall 2018-3
CAS Spring 2017-2
CAS Fall 2016-2
CAS Spring 2015-5
CAS Spring 2015-4
CAS Spring 2014-1

Premium Development

Werner Ratemaking Ch. 5

Problem

Given the following for a workers compensation insurer as of 12/31/22:

Policy				Earned Premium Evaluated as of
Year	12 months	24 months	36 months	Ultimate 48 months
2018	3,348	6,663	6,958	6,958
2019	3,481	6,725	7,315	7,315
2020	3,603	6,718	6,940	
2021	3,711	7,076		
2022	3,823			

- Premium audits are performed between 3 and 6 months after policies expire.
- All policies have an annual policy term.

Calculate the estimated ultimate earned premium for by policy year for years 2018-2022.

Solution Recipe

1) Calculate the age-to-age development factors (link ratios) for the premium development triangle.

$$
\text { Age-to-Age Factor }{ }_{t}=\frac{\text { Premium }_{t+1}}{\text { Premium }_{t}}
$$

2) Select a suitable link ratio for each development period based on how development is expected to occur in the future. Reviewing various averages can help with selection. There's no single "correct" selection, but the selection should be reasonable.

Age-to-Age Factors				$\begin{aligned} \text { All-Year } \text { Avg }_{12-24} & =\frac{1.990+\cdots+1.907}{4} \\ & =1.923 \end{aligned}$
Policy				
Year	12-24	24-36	36-48	
2018	1.990	1.044	1.000	
2019	1.932	1.088	1.000	$6,663+\cdots+7,076$
2020	1.865	1.033		Weighted $\operatorname{Avg}_{12-24}=\frac{6,348+\cdots+3,711}{3,36}$
2021	1.907			$=1.922$
All-Year Avg	1.923	1.055	1.000	
Weighted Avg	1.922	1.055	1.000	
Selected	1.922	1.055	1.000	

3) Calculate the age-to-ultimate development factors for each maturity period as the product of the age-to-age factors between the maturity period and ultimate.

$$
\text { Age-to-Ult Factor }{ }_{t}=\prod_{i=t}^{U l t} \text { Age-to-Age Factor }{ }_{i}
$$

$$
\begin{aligned}
& \text { Age-to-Ult Factor } \begin{aligned}
& 12-U l t=1.922 \times 1.055 \\
&=2.028 \\
& 12 \text {-Ult } \\
& \hline \text { Age-to-Ultimate Factor } 2.028 \\
& \hline
\end{aligned}
\end{aligned}
$$

4) Apply the appropriate age-to-ultimate development factor to the premium for each policy year to estimate ultimate premium.

$$
\text { Ultimate Premium }=\text { Premium }_{\text {at latest valuation }} \times \text { Age-to-Ult Factor }{ }_{t}
$$

$$
\begin{aligned}
\text { Ultimate Premium }_{2022} & =3,823 \times 2.028 \\
& =7,753
\end{aligned}
$$

Policy Year	Earned Prem as of $12 / 31 / 23$	Age-to-Ult Factor	Ultimate Earned Prem
2018	6,958	1.000	6,958
2019	7,315	1.000	7,315
2020	6,940	1.000	6,940
2021	7,076	1.055	7,465
2022	3,823	2.028	7,752

Note: 2018 and 2019 are already at ultimate (48 months here), so their age-to-ultimate factor is set to 1.

Discussion

There are two main scenarios where premium development is used:

- When an incomplete year of data is used
- When the line of business uses premium audits

In this problem, we see both of these scenarios:
Incomplete Policy Year - Because policies have annual terms and the premium is aggregated by policy year, policies for 2022 won't fully expire until 12/31/23 after 24 months. This is why the 12-24 age-to-age factor is so high. It's reflecting the fact that a policy year evaluated at 12 months maturity is an incomplete year.

Premium Audits - At 24 months, all policies are expired, but only some have had a premium audit. Premium audits aren't fully complete for a year until 6 months after the policy year expires (30 months).

Premium development is generally only done for policy year premium because calendar year premium is fixed at the end of each year, so there is no development. Some actuaries may adjust calendar year premium if audit patterns are changing, but this isn't elaborated on.

Source

Werner Ratemaking Ch. 5-pg. 80-81

More Practice

One-Step Premium Trend

Werner Ratemaking Ch. 5

Problem

An actuary is performing a rate review for a Home insurance book of business using the following premium information as of $3 / 31 / 2022$:

Year Ending Quarter - X	Written Premium at CRL	Written Exposures	Calendar Year	Earned Premium at CRL
$2019-1 Q$	134,300	128	2019	139,994
$2019-2 Q$	137,511	129	2020	151,434
$2019-3 Q$	139,447	130	2021	163,104
$2019-4 Q$	141,394	132		
$2020-1 Q$	144,364	133		
$2020-2 Q$	147,201	135		
$2020-3 Q$	150,063	136		
$2020-4 Q$	152,949	138		
$2021-1 Q$	155,859	139		
$2021-2 Q$	158,794	141		
$2021-3 Q$	161,753	142		
$2021-4 Q$	164,736	144		

- All policies have an annual policy term
- The proposed effective date for the rate change is: $1 / 1 / 2023$
- The proposed rates are expected to be in effect for one year

Calculate the projected earned premium at current rate level for years 2019-2021 using the one-step premium trend method.

Solution Recipe

1) Calculate the average written premium per exposure at current rate level for the quarterly premium data.

$$
\text { Avg WP at } C R L=\frac{W P \text { at } C R L}{\text { Exposures }}
$$

$$
\begin{aligned}
\text { Avg WP at } C R L_{2020-1 Q} & =\frac{144,364}{133} \\
& =1,085
\end{aligned}
$$

2) Calculate the annual changes in average written premium and select an appropriate trend factor to adjust historical premium to projected levels. Fitting an exponential or linear trend may help, but isn't necessary if the annual changes are consistent.

$$
\begin{aligned}
\text { Annual Change }_{t}=\frac{A v g W P \text { at } C R L_{t}}{A v g W P \text { at } C R L_{t-1}}-1 \quad \text { Annual Change } & \begin{aligned}
2020-1 Q & =\frac{1,085}{1,049}-1 \\
& =3.5 \%
\end{aligned} \text {. } \quad \text {. }
\end{aligned}
$$

Year Ending Quarter - X	Written Premium at CRL	Written Exposures	Average Written Prem at CRL	Annual Change
$2019-1 Q$	134,300	128	1,049	-
$2019-2 Q$	137,511	129	1,066	-
$2019-3 Q$	139,447	130	1,073	-
$2019-4 Q$	141,394	132	1,071	-
$2020-1 Q$	144,364	133	1,085	3.5%
$2020-2 Q$	147,201	135	1,090	2.3%
$2020-3 Q$	150,063	136	1,103	2.9%
$2020-4 Q$	152,949	138	1,108	3.5%
$2021-1 Q$	155,859	139	1,121	3.3%
$2021-2 Q$	158,794	141	1,126	3.3%
$2021-3 Q$	161,753	142	1,139	3.2%
$2021-4 Q$	164,736	144	1,144	3.2%

3) Determine the trend period for each calendar year of premium. The trend period is the time from the average written date of policies earned during the experience period to the average written date for the effective period of the proposed rates.
```
1-Step Trend Period = Historical Average Written Date }->\mathrm{ Effective Average Written Date
```

1 -Step Trend Period ${ }_{2021}=1 / 1 / 21$ to $6 / 30 / 23=2.5$ years

4) Calculate the premium trend factor and apply it to the calendar year earned premium to calculate the projected earned premium at current rate level. Make sure to use earned premium.

$$
\text { Projected Earned Prem at CRL }=\text { Earned Prem at CRL } \times(1+\text { trend })^{t}
$$

$$
\begin{aligned}
\text { Projected Earned Prem at } C R L_{2021} & =163,104 \times(1.031)^{2.5} \\
& =176,040
\end{aligned}
$$

Calendar Year	Earned Premium at CRL	Trend Period	Premium Trend Factor	Projected Earned Prem at CRL
2019	139,994	4.5	1.147	160,610
2020	151,434	3.5	1.113	168,511
2021	163,104	2.5	1.079	176,040

Discussion

In addition to adjusting premium to current rate level, it's important to adjust the historical on-level premium to expected levels during the future time period due to premium trend.

Premium trend reflects how average written premium levels change over time due to distributional changes in a book's mix of business.

One-Step Premium Trend

The basic one-step trending approach involves selecting a premium trend based on historical changes in average written premium per exposure and applying it to the experience period premium.

Written premium at current rate level should be used. It's best to use quarterly written premium for responsiveness and 12 -month rolling periods are often used. For example, written premium for the year ending 2019 Q2 includes written premium between $7 / 1 / 18$ and $6 / 30 / 19$. See the exhibits in the appendix.

Determining the correct trend period length is critical. The trend period is the length of time from the average written date of policies underlying the historical earned premium to the average written date of policies effective with the new rates.

The one-step approach may not be appropriate when changes in average premium vary significantly year-by-year or when historical average premium changes differ from expected future changes. In such cases, a two-step trending approach is more appropriate.

Factors That Impact Trend Period Length

- Different Policy Term Length

For example, if all policies above were 6 -month policies, the average written date for policies underlying CY 2021 earned premium would be 4/1/21 (policies written between 7/1/20 and $12 / 31 / 21$). The trend-to date is the same and the trend period would be 2.25 years.

- Historical Policy Year Premium

For example, if policy year earned premium was used, the average written date for policies underlying PY 2021 earned premium would be the mid-point of the policy year, $7 / 1 / 21$. The trendto date is the same and the trend period would be 2 years for PY 2021 earned premium.

- Different Effective Period for Proposed Rates

For example, if rates are expected to be in effect for two years ($1 / 1 / 23$ to $12 / 31 / 24$), then the trendto date would be $12 / 31 / 23$. For CY 2021 earned premium, the trend period would be 3 years (1/1/21 to $12 / 31 / 23$).

Exposure Trend

If the exposure base is inflation-sensitive (like payroll for workers compensation), then average premium can change over time due to inflation in the exposure base. For lines of business with inflation-sensitive exposure bases, an exposure trend is used to project future exposures (and therefore premium) to future levels.

This isn't discussed further in the text, but you can see an example of it in appendix D. The adjustment is very similar to premium trend.

Source

Werner Ratemaking Ch. 5 - pg. 81-86

More Practice

CAS Spring 2019-2
CAS Spring 2015-4
CAS Spring 2013-2

Two-Step Premium Trend

Werner Ratemaking Ch. 5

Problem

An actuary is performing a rate review for an Auto insurance book of business using the following premium information as of $3 / 31 / 2022$:

Quarter - X	Written Premium at CRL	Written Exposures	Calendar Year	Earned Premium at CRL	Earned Exposures
2020-1Q	309,960	492	2017	1,128,805	2,009
2020-2Q	340,896	536	2018	1,182,755	2,001
2020-3Q	347,964	542	2019	1,237,389	2,046
2020-4Q	326,592	504	2020	1,298,903	2,067
2021-1Q	331,578	507	2021	1,398,917	2,130
2021-2Q	364,872	552			
2021-3Q	372,744	558			
2021-4Q	350,325	519			

The company acquired a small insurer on $1 / 1 / 2022$ with a sub-prime book of auto business. After consolidating the books, the actuary expects the average premium level to increase. The actuary selects a 3% annual premium trend for the prospective period.

- All policies have a six-month policy term
- The proposed effective date for the rate change is: $4 / 1 / 2023$
- The proposed rates are expected to be in effect for 12 months

Calculate the projected earned premium at current rate level for years 2017-2021 using the two-step premium trend method.

Solution Recipe

1) Calculate the average written premium per exposure at current rate level for the quarterly premium data for the latest point in the written premium trend data.

$$
\text { Latest Average WP at CRL }=\frac{\text { Latest } W P \text { at } C R L}{\text { Latest } \# E x p o s u r e s}
$$

$$
\text { Latest Average WP at } \begin{aligned}
C R L & =\frac{350,325}{519} \\
& =675
\end{aligned}
$$

2) [Step 1 - Current Trend Factor] Calculate the current premium trend factor to adjust each year's historical earned premium at current rate level to the average premium level of the latest point in the written premium trend data.

$$
\text { Current Trend Factor }=\frac{\text { Latest Average WP at CRL }}{\text { Historical Average EP at CRL }}
$$

$$
\begin{aligned}
& \text { Current Trend Factor }_{2021}=\frac{675}{657} \\
& \\
& =1.028 \\
& \begin{array}{c|ccc|c}
\text { Calendar } & \begin{array}{c}
\text { Earned } \\
\text { Premium } \\
\text { Year CRL }
\end{array} & \begin{array}{c}
\text { Earned } \\
\text { Exposures }
\end{array} & \begin{array}{c}
\text { Average } \\
\text { Earned Prem } \\
\text { at CRL }
\end{array} & \begin{array}{c}
\text { Current } \\
\text { Trend Factor }
\end{array} \\
\hline 2017 & 1,128,805 & 2,009 & 562 & 1.201 \\
2018 & 1,182,755 & 2,001 & 591 & 1.142 \\
2019 & 1,237,389 & 2,046 & 605 & 1.116 \\
2020 & 1,298,903 & 2,067 & 628 & 1.074 \\
2021 & 1,398,917 & 2,130 & 657 & 1.028
\end{array}
\end{aligned}
$$

3) Determine the trend period for the projected trend factor. The projected trend period is the time from the average written date of the latest point in the trend data to the average written date for the effective period of the proposed rates.
```
Projected Trend Period = Latest Average Written Date }->\mathrm{ Effective Average Written Date
```

Latest Average Written Date	$11 / 15 / 2021$
Avg Written Date for Effective Period	$9 / 30 / 2023$
Projected Trend Period	1.875

Note: This problem gives written premium by quarter, not 12 -month rolling periods like the 1 -step premium trend problem or the exhibit in Appendix A of Werner. You should be prepared for either.
4) [Step 2 - Projected Trend Factor] Calculate the projected trend factor using the projected annual premium trend and the projected trend period.

Projected Trend Factor $=(1+\text { projected trend })^{t}$

$$
\begin{aligned}
\text { Projected Trend Factor } & =(1+3 \%)^{1.875} \\
& =1.057
\end{aligned}
$$

5) Calculate the total premium trend factor as the product of the current trend factor and the projected trend factor. Apply it to the calendar year earned premium to calculate the projected earned premium at current rate level.

Projected EP at CRL $=E P$ at CRL \times Current Trend Factor \times Projected Trend Factor

$$
\begin{aligned}
\text { Projected } E P \text { at } C R L_{2021} & =1,398,917 \times 1.028 \times 1.057 \\
& =1,519,684
\end{aligned}
$$

Calendar Year	Earned Premium at CRL	(Step 1) Current Trend Factor	(Step 2) Projected Trend Factor	Projected Earned Prem at CRL
2017	$1,128,805$	1.201	1.057	$\mathbf{1 , 4 3 3 , 3 5 4}$
2018	$1,182,755$	1.142	1.057	$\mathbf{1 , 4 2 7 , 6 4 6}$
2019	$1,237,389$	1.116	1.057	$\mathbf{1 , 4 5 9 , 7 5 2}$
2020	$1,298,903$	1.074	1.057	$\mathbf{1 , 4 7 4 , 7 3 5}$
2021	$1,398,917$	1.028	1.057	$\mathbf{1 , 5 1 9 , 6 8 4}$

Discussion

The two-step trending method for premium trend should be used instead of the one-step method in situations where the historical premium trend has been significantly different from what is expected to occur in the future. This allows us to separately adjust the historical earned premium data to current average premium levels (step 1) and then apply a different trend into the projected period to reflect anticipated future changes to average premiums.

Alternative Approach for the Current Trend Factor

When the historical average premium is volatile, an alternative approach is to select an annual premium trend for the current trend period instead of the ratio shown in the Current Trend Factor formula.

Example:

Assume we selected an annual premium trend of 4% for the current period. Below is how to calculate the current trend factor for CY 2021 Earned Premium:

Avg Written Date of Policies Earned ${ }_{C Y} 2021$	$4 / 1 / 2021$	
Latest Average Written Date	$11 / 15 / 2021$	\leftarrow All policies are 6-month
Current Trend Period ${ }_{\text {CY } 2021}$	0.625	$\leftarrow 4 / 1 / 21$ to 11/15/21

Current Trend Factor ${ }_{C Y} 2021=(1+4 \%)^{0.625}$

$$
=1.0248
$$

The projected trend factor would be the same as before.

Source

Werner Ratemaking Ch. 5 - pg. 86-88

More Practice

CAS Spring 2019-2 $2 \leftarrow$ One-step trending is easier for this problem CAS Spring 2017-1

Loss Aggregation

Werner Ratemaking Ch. 6 \& Friedland Reserving Ch. 4

Problem

Given the following claims organized by accident date as of 12/31/2023:

Claim	Policy Effective Date	Accident Date	Report Date	Transaction Date	Claim Status	Incremental Payment	Case Reserve
1	4/18/2019	2/22/2020	2/4/2022	2/4/2022	Open	-	10,000
				5/14/2022	Closed	5,000	-
				8/2/2022	Reopened	-	20,000
				2/1/2023	Closed	25,000	-
2	12/15/2019	6/8/2020	6/15/20	6/15/2020	Open	-	3,000
				7/28/2020	Open	2,000	$12,000$
				9/3/2020	Open	8,000	$4,000$
				1/12/2021	Closed	3,000	-
3	7/5/2020	11/24/2020	12/8/2020	12/8/2020	Open	-	4,000
				3/15/2022	Open	-	20,000
				5/2/2023	Closed	-	
4	12/19/2020	5/12/2021	5/29/2021	5/29/2021	Open	-	8,000
				$7 / 30 / 2021$	Open	5,000	10,000
				3/1/2022	Open	2,000	15,000
				2/15/2023	Open	10,000	5,000

- The case reserve amounts are the case reserves as of the transaction date.
a. Calculate the 2020 reported loss aggregated by:
i. Calendar year
ii. Accident year evaluated as of $12 / 31 / 2022$
iii. Policy year evaluated as of $12 / 31 / 2022$
iv. Report year evaluated as of $12 / 31 / 2022$
b. Build an accident year paid loss cumulative development triangle for accident years 2019-2021 with annual December 31 valuations.

Solution Recipe

Part a - Loss Data Aggregation

1) For Calendar Year, losses are aggregated by transaction date, regardless of the policy effective date, accident date, or report date. Calendar year reported loss includes all loss payments in the year plus the change in case reserves over the year. Calendar year losses are fixed at year-end.

For transactions in the Calendar Year:

$$
\begin{gathered}
\text { CY Reported Loss }=\sum \text { Paid Losses }+\Delta \text { Case Reserve } \\
\text { CY Paid Loss }=\sum \text { Paid Losses }
\end{gathered}
$$

$$
\begin{aligned}
\text { CY } 2020 \text { Reported Loss } & =(2,000+8,000+0)+[(4,000+4,000)-0] \\
& =18,000
\end{aligned}
$$

Note: Only include transactions with a transaction date in 2020. For case reserves, use the difference between the ending case reserve (as of $12 / 31 / 2020$) and the beginning case reserve (as of $1 / 1 / 2020$) for the year.
2) For Accident Year, losses are aggregated by accident date. Accident year reported loss incudes all loss payments up to the evaluation date for claims with a loss occurrence date during the year plus the case reserve as of the evaluation date.

For losses occurring during the Accident Year:

$$
\text { AY Reported Loss }=\sum \text { Paid Losses }+ \text { Case Reserves }{ }_{\text {eval date }}
$$

$$
\text { AY Paid Loss }=\sum \text { Paid Losses }
$$

$$
\begin{aligned}
\text { AY } 2020 \text { Reported Loss } & =(5,000+2,000+8,000+3,000+0)+(20,000+0+20,000) \\
& =58,000
\end{aligned}
$$

Note: The evaluation date is $12 / 31 / 2022$, so only include transactions that occurred by then and for claims with a loss occurrence in 2020.
3) For Policy Year, losses are aggregated by policy effective date. Policy year reported loss incudes all loss payments up to the evaluation date for claims from policies with an inception date during the year plus the case reserve as of the evaluation date.

For policies incepted during the Policy Year:

$$
\begin{gathered}
\hline \text { PY Reported Loss }=\sum \text { Paid Losses }+ \text { Case Reserves }{ }_{\text {eval date }} \\
\text { PY Paid Loss }=\sum \text { Paid Losses }
\end{gathered}
$$

$$
\begin{aligned}
\text { PY } 2020 \text { Reported Loss } & =(0+5,000+2,000)+20,000+15,000 \\
& =42,000
\end{aligned}
$$

4) For Report Year, losses are aggregated by report date. Report year is similar to accident year except that losses are aggregated by report date instead of accident date.

For losses reported during the Report Year:

$$
\text { RY Reported Loss }=\sum \text { Paid Losses }+ \text { Case Reserves }{ }_{\text {eval date }}
$$

$$
\text { RY Paid Loss }=\sum \text { Paid Losses }
$$

$$
\begin{aligned}
\text { RY } 2020 \text { Reported Loss } & =(2,000+8,000+3,000)+0+20,000 \\
& =33,000
\end{aligned}
$$

Part b-Cumulative Loss Development Triangle

5) Set up a loss triangle with rows by accident year (or policy/report year) and columns at valuation month relative to the start of the year (e.g. 12 months, 24 months, ...).

Accident Year	12 Months	24 Months	36 Months	48 Months
2019	0	0	0	0
2020	18,000	17,000	58,000	43,000
2021	15,000	22,000	22,000	

Note: The 2020 Accident Year loss evaluated as of 12/31/2022 from part a is the 2020 Accident Year loss at 36 months shown in the triangle here. Claim \#1 isn't reported until after 24 months development.

Discussion

Data aggregation questions (loss, premium or exposure) are simple in theory, but attention to detail is critical. The calculation is defined by the following elements:

- Relevant statistic measured - Paid or reported loss, earned premium, written exposure, etc.
- Data aggregation method - Calendar, accident, policy, or report year/month/quarter
- Time period - E.g. 2020, Fiscal Year 2022, or 2021 Q1
- Valuation Date - When the data is evaluated (part of the time period)

Calendar Year Aggregation

Calendar year aggregation considers all premium and loss transactions that occur during the calendar year regardless of the policy effective date, accident date, or report date. It's most appropriate for lines of business where losses are reported and settled quickly.

Advantages Disadvantages

- Data is available quickly and is fixed at year-end
- Mismatch in timing between premium and losses
- Requires no additional expense to aggregate
- May not be appropriate for lines of business where losses are reported and settled relatively slowly.

Accident Year Aggregation

Accident year aggregation includes losses for accidents that occurred during the accident year, regardless of when the policy was issued or the claim was reported. Premium and exposures are the same as calendar year.

Advantages	Disadvantages
-Better match of premium and losses than calendar year aggregation	-Future development on known losses needs to be estimated

Policy Year Aggregation

Policy year aggregation (underwriting year) includes all premium and loss transactions on policies that were written during the year, regardless of when the claim occurred or when it was reported, reserved, or paid. Premium and exposures aren't fixed until after all policies written during the policy year have expired.

Advantages		Disadvantages
- The best match between losses and		
premium		

Report Year Aggregation

Report year aggregation is similar to calendar-accident year, except that the losses are aggregated according to when the claim was reported, as opposed to loss occurrence date. It is typically used for claims-made policies.

Source

Werner Ratemaking Ch. 6 - pg. 90-93, 42-44 (advantages/disadvantages)
Friedland Reserving Ch. 4 - pg. 51-60

More Practice

CAS Fall 2018-15
CAS Spring 2018 Makeup - 2
CAS Spring 2018 Makeup - 15
CAS Spring 2018-16
CAS Fall 2017 - 16
CAS Spring 2017-3
CAS Fall 2016 - 16
CAS Spring 2016-4
CAS Spring 2016-15
CAS Fall 2015-16
CAS Spring 2015-15

Extraordinary Losses

Werner Ratemaking Ch. 6

Problem

Given the following loss information for a Homeowners book of business undergoing a ratemaking analysis:

Accident	Reported Year	Losses	1	2	Largest Claims					
2007	$76,875,714$	$2,022,062$	$1,787,954$	$1,242,313$	$1,131,477$	973,805				
2008	$60,916,907$	$2,005,466$	$1,862,951$	$1,543,141$	$1,455,848$	$1,185,086$				
2009	$41,712,714$	$1,061,301$	$1,037,846$	969,623	951,167	890,444				
2010	$63,515,325$	$1,716,360$	$1,633,779$	$1,204,630$	$1,124,469$	$1,028,317$				
2011	$53,000,933$	$2,314,636$	$1,457,525$	$1,316,407$	$1,080,797$	$1,063,648$				
2012	$44,869,468$	$1,674,273$	999,249	915,594	908,755	870,177				
2013	$43,260,337$	$2,002,786$	$1,388,327$	$1,231,978$	$1,154,774$	$1,007,637$				
2014	$61,967,802$	$1,422,431$	$1,340,170$	$1,264,830$	$1,161,002$	$1,120,878$				
2015	$47,051,055$	$2,536,648$	$1,832,912$	$1,471,365$	$1,302,771$	$1,141,176$				
2016	$43,054,299$	$1,614,409$	$1,035,201$	$1,020,831$	961,403	928,812				
2017	$45,806,432$	$1,725,250$	$1,337,870$	$1,219,562$	$1,197,121$	$1,195,792$				
2018	$46,417,329$	$1,496,189$	$1,190,257$	932,890	850,882	844,945				
2019	$45,572,683$	$1,128,725$	931,334	848,336	815,734	812,016				
2020	$46,415,447$	$1,298,035$	$1,255,713$	$1,175,925$	$1,161,828$	$1,151,466$				
2021	$40,037,115$	$1,543,742$	$1,313,928$	$1,114,386$	$1,103,745$	986,073				

- Large Loss Threshold \$1,250,000
- All losses are trended to future levels
a. Calculate the excess loss factor that should be applied to non-excess losses in the historical experience period of the ratemaking analysis.
b. Calculate the non-excess reported losses for accident years 2017-2021 loaded with a provision for shock losses that should be used for the ratemaking analysis.

Solution Recipe

Part a - Excess Loss Factor

1) Calculate the excess and non-excess losses based on the large loss threshold for all accident years. If given a set of large losses, use SUMIF() and COUNTIF() formulas to easily calculate the excess losses. This should be done on trended losses.

Losses Excess Threshold $=$ Ground-Up Excess Losses - Threshold $\times \#$ Excess Claims
Non-Excess Losses $=$ Reported Losses - Losses Excess Threshold

$$
\begin{aligned}
\text { Loss Excess Threshold }_{2007} & =2,022,062+1,787,954-1,250,000 \times 2 \\
& =1,310,016
\end{aligned}
$$

$$
\text { Non-Excess } \text { Losses }_{2007}=76,875,714-1,310,016
$$

$$
=75,565,698
$$

In Excel
Number of Excess Claims = COUNTIF(Large Claims, ">"\& Threshold)
Ground-Up Excess Losses = SUMIF(Large Claims, ">"\& Threshold)
2) Calculate the excess ratio for each year as the ratio of the excess losses to non-excess losses.

$$
\begin{aligned}
\text { Excess Ratio }=\frac{\text { Losses Excess Threshold }}{\text { Non-Excess Threshold }}^{\text {Excess Ratio }_{2007}} & =\frac{1,310,016}{75,565,698} \\
& =1.7 \%
\end{aligned}
$$

Accident Year	Reported Losses	Number of Excess Claims	Ground-Up Excess Losses	Losses Excess Threshold	Non-Excess Losses	Excess Ratio
2007	$76,875,714$	2	$3,810,016$	$1,310,016$	$75,565,698$	1.7%
2008	$60,916,907$	4	$6,867,406$	$1,867,406$	$59,049,501$	3.2%
2009	$41,712,714$	0	0	0	$41,712,714$	0.0%
2010	$63,515,325$	2	$3,350,139$	850,139	$62,665,186$	1.4%
2011	$53,000,933$	3	$5,088,568$	$1,338,568$	$51,662,365$	2.6%
2012	$44,869,468$	1	$1,674,273$	424,273	$44,445,195$	1.0%
2013	$43,260,337$	2	$3,391,113$	891,113	$42,369,224$	2.1%
2014	$61,967,802$	3	$4,027,431$	277,431	$61,690,371$	0.4%
2015	$47,051,055$	4	$7,143,696$	$2,143,696$	$44,907,359$	4.8%
2016	$43,054,299$	1	$1,614,409$	364,409	$42,689,890$	0.9%
2017	$45,806,432$	2	$3,063,120$	563,120	$45,243,312$	1.2%
2018	$46,417,329$	1	$1,496,189$	246,189	$46,171,140$	0.5%
2019	$45,572,683$	0	0	0	$45,572,683$	0.0%
2020	$46,415,447$	2	$2,553,748$	53,748	$46,361,699$	0.1%
2021	$40,037,115$	2	$2,857,670$	357,670	$39,679,445$	0.9%

3) Calculate the excess loss factor based on the weighted-average excess ratio that should be applied to non-excess losses for the ratemaking analysis.

$$
\text { Excess Loss Factor }=1+\frac{\sum \text { Losses Excess Threshold }}{\sum \text { Non-Excess Threshold }}
$$

$$
\begin{aligned}
\text { Excess Loss Factor } & =1+\frac{1,310,016+\cdots+357,670}{75,565,698+\cdots+39,679,445} \\
& =1.014
\end{aligned}
$$

Part b-Adjust Losses for Large Individual Losses

4) Apply the excess loss factor to the non-excess losses in the historical experience period to adjust losses for the average expected large loss amount.
```
Losses Adjusted for Excess Losses = Non-Excess Losses }\times\mathrm{ Excess Loss Factor
```

$$
\begin{aligned}
&{\text { Losses Adjusted for Excess } \text { Losses }_{A Y ~ 2017}}=45,243,312 \times 1.014 \\
&=45,888,230
\end{aligned}
$$

Accident Year	Non-Excess Losses	Excess Loss Factor	Losses Adjusted for Excess Losses
2017	$45,243,312$	1.014	$45,888,230$
2018	$46,171,140$	1.014	$46,829,284$
2019	$45,572,683$	1.014	$46,222,296$
2020	$46,361,699$	1.014	$47,022,559$
2021	$39,679,445$	1.014	$40,245,053$

Discussion

There are two types of extraordinary losses:

- Large Individual Losses (Shock Losses) - These infrequent, large individuallosses may occur with some regularity. Examples include a large multi-claimant liability claim or a total permanent disability of a young worker.
- Catastrophe Losses - These large aggregate losses result from unusually severe natural or manmade disasters, such as hurricanes and terrorist attacks, that lead to a significant number of claims.

In the ratemaking process, shock losses and catastrophe losses should be removed from the historical data or capped at a large loss threshold, as Werner shows. The actual excess losses are replaced with a longerterm average expected excess loss amount by loading in an excess loss factor.

Enough accident years should be used to produce a stable and reasonable estimated excess loss factor, but not so many years such that the historical data is irrelevant.

Note On Trending:

Reported losses should be trended to future levels before removing actual excess losses and loading in an excess loss factor. Alternatively, the large loss threshold can be indexed to older years to reflect the loss trend and then applied to ground-up untrended losses.

Setting the Large Loss Threshold

For shock losses, a large loss threshold is selected that best balances the goals of:

- Including as many losses as possible and
- Minimizing volatility in the ratemaking analysis

One approach is to set the threshold at a given percentile from the severity distribution, such as the 99th percentile. Alternatively, a threshold can be chosen based on a percentage of losses rather than claim counts.

Catastrophe Losses

Catastrophe losses should be removed from the actual historical loss data and replaced with an average expected catastrophe loss amount. This prevents the ratemaking analysis from being distorted by catastrophic losses.

There are two groups of catastrophe losses:

- Non-Modeled Catastrophes - These catastrophes affect a large number of claims, but occur with some regularity (e.g. hailstorms impacting automobile policies).
\rightarrow Calculate a ratio of CAT losses to non-CAT losses over a longer experience period (e.g. 10-30 years, balancing stability and responsiveness). Multiply the ratio by non-CAT losses to get an expected CAT loss loading.
\rightarrow Alternatively, a pure premium per exposure can be selected and loaded into the rates.
- Modeled Catastrophes - Catastrophic events that are extremely sporadic and cause high severity losses are modeled with sophisticated Catastrophe models (e.g. for hurricanes and earthquakes). These models estimate an expected annual loss for the type of catastrophe based on the insurer's exposure (book of business).
\rightarrow Add the model's catastrophe loss provision to the non-catastrophe losses

Reinsurance

Reinsurance is insurance for primary insurers and helps them manage some of their risk. There are two types of reinsurance:

- Proportional Reinsurance - Premium and losses are ceded to the reinsurer with the same proportion (e.g. a 30% quota share reinsurance treaty)
\rightarrow Generally, this doesn't need to be explicitly considered for ratemaking.
- Non-Proportional Reinsurance - The insurer pays a portion of premium to the reinsurer (reinsurance cost) and the reinsurer assumes a predefined portion of losses (reinsurance recoveries) from the insurer (e.g. an excess of loss treaty covering 50% of losses in the $\$ 15 \mathrm{M}$ to $\$ 30 \mathrm{M}$ loss layer)
\rightarrow Take into account by reducing projected losses by the expected non-proportional loss recoveries and reducing the total premium by the cost of reinsurance.
\rightarrow Alternatively, add the net cost of non-proportional reinsurance (cost of reinsurance minus expected recoveries) as an expense item in the rate indication.

CBT Spreadsheet Tips

Use the COUNTIF(range, criteria) formula to count the number of excess claims and the SUMIF(range, criteria) to calculate the ground-up excess losses that exceed the large loss threshold.

Important:

The setup of the COUNTIF() and SUMIF() formulas is tricky because they use a logical operator. The correct criteria is: ">"\& Threshold.

For example, the full formula is:
COUNTIF (Array of Claim Values , ">"\& Large Loss Threshold)

Source

Werner Ratemaking Ch. 6-pg. 95-99

More Practice

CAS Spring 2019-5
CAS Spring 2018 Makeup - 3
CAS Spring 2018-5
CAS Spring 2015-8
CAS Fall 2013 - 5

