Exam

 Study Guide
 ADVANCED ESTIMATION OF CLAIMS LIABILITIES

Comprehensive study guide with original and past CAS problems

Exam 7 Study Guide

2024 Sitting

Rising Fellow

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below.

Published By:
Rising Fellow
United States, TX, 78006
www.RisingFellow.com
Contact: info@RisingFellow.com
Published in the United States

Contents

Introduction 1
Mack 2000
Outline 3
Original Mathematical Problems \& Solutions 7
Past CAS Exam Problems \& Solutions 17
Hürlimann
Outline 23
Original Mathematical Problems \& Solutions 33
Original Essay Problems 47
Original Essay Solutions 48
Past CAS Exam Problems \& Solutions 49
Brosius
Outline 67
Original Mathematical Problems \& Solutions 81
Original Essay Problems 97
Original Essay Solutions 99
Past CAS Exam Problems \& Solutions 101
Friedland
Outline 117
Original Mathematical Problems \& Solutions 151
Original Essay Problems 167
Original Essay Solutions 173

Clark

Outline 185
Original Mathematical Problems \& Solutions 201
Original Essay Problems 221
Original Essay Solutions 223
Past CAS Exam Problems \& Solutions 227
Mack 1994
Outline 261
Original Mathematical Problems \& Solutions 279
Original Essay Problems 291
Original Essay Solutions 293
Past CAS Exam Problems \& Solutions 297
Venter Factors
Outline 339
Original Mathematical Problems \& Solutions 355
Original Essay Problems 381
Original Essay Solutions 382
Past CAS Exam Problems \& Solutions 385
Shapland
Outline 397
Original Mathematical Problems \& Solutions 441
Original Essay Problems 469
Original Essay Solutions 475
Past CAS Exam Problems \& Solutions 487
Siewert
Outline 517
Original Mathematical Problems \& Solutions 529
Original Essay Problems 545
Original Essay Solutions 546
Past CAS Exam Problems \& Solutions 549

Sahasrabuddhe

Outline 565
Original Mathematical Problems \& Solutions 577
Original Essay Problems 583
Original Essay Solutions 584
Past CAS Exam Problems \& Solutions 587
Teng \& Perkins
Outline 597
Original Mathematical Problems \& Solutions 615
Original Essay Problems 629
Original Essay Solutions 631
Past CAS Exam Problems \& Solutions 635
Meyers
Outline 659
Original Mathematical Problems \& Solutions 675
Original Essay Problems 679
Original Essay Solutions 682
Past CAS Exam Problems \& Solutions 685
Taylor \& McGuire
Outline 697
Original Mathematical Problems \& Solutions 715
Original Essay Problems 729
Original Essay Solutions 731
Past CAS Exam Problems \& Solutions 735
Verrall
Outline 737
Original Mathematical Problems \& Solutions 749
Original Essay Problems 757
Original Essay Solutions 758
Past CAS Exam Problems \& Solutions 761
Marshall
Outline 783
Original Mathematical Problems \& Solutions 805
Original Essay Problems 811
Original Essay Solutions 814
Past CAS Exam Problems \& Solutions 819
Past CAS Integrative Questions 845

Introduction

How To Use This Guide

This guide is intended to supplement the syllabus readings. Although we believe it provides a thorough review of the exam material, the readings provide additional context that is invaluable. Please do NOT skip the syllabus readings.

Original Mathematical \& Essay Problems

Original mathematical \& essay problems/solutions are included for all papers. If a topic is covered in an essay problem, then you should know it. All original practice problems are included in the guide and as separate Excel workbooks. The Excel workbooks can be downloaded from the online course.

Past CAS Exam Problems

Past CAS exam problems \& solutions are included for each paper. Note that these questions are solely owned by the CAS. They are included in the online course for student convenience. All past CAS problems are included in the guide and as separate Excel workbooks. The Excel workbooks can be downloaded from the online course.

Feedback

We always working to improve the Exam 7 Study Guide and the rest of the Rising Fellow study material. Please send us an email at exam7@risingfellow.com if you have feedback about any of the following:
\diamond Sections that are confusing or could be improved
\diamond Errors (ex. formatting, spelling, calculations, grammar, etc.)
Note that errata will be posted on the Rising Fellow website on an as-needed basis.

Blank Pages

Since many students want a printed copy of the study guide, blank pages have been inserted throughout the guide to ensure that all outlines start on odd pages.

Bookmarks

Bookmarks have been added for each section listed in the table of contents for easier navigation in Adobe Acrobat.

Mack (2000)

Outline

\diamond Notation

- p_{k} is the proportion of the ultimate claims amount which is expected to be paid after k years of development
- $q_{k}=1-p_{k}$ is the proportion of the ultimate claims amount which is expected to remain unpaid after k years of development
- $U_{0}=U^{(0)}$ is the a priori expectation of ultimate losses (i.e. expected ultimate losses)
- $U_{B F}=U^{(1)}$ is the Bornhuetter/Ferguson ultimate claims estimate
- $U_{G B}=U^{(2)}$ is the Gunner Benktander ultimate claims estimate
- $U_{C L}=U^{(\infty)}$ is the chain ladder ultimate claims estimate
- $U^{(m)}$ is the ultimate claim estimate at the $m^{\text {th }}$ iteration
- U_{c} is a credibility weighted ultimate claims estimate, where c is the credibility factor
- \hat{U} is any ultimate claims estimate
- $R_{B F}$ is the Bornhuetter/Ferguson reserve estimate
- $R_{C L}$ is the chain ladder reserve estimate
- $R_{G B}$ is the Gunner Benktander reserve estimate
- \hat{R} is any reserve estimate
- C_{k} is the actual claims amount paid after k years of development
\diamond General relationship between any reserve estimate \hat{R} and the corresponding ultimate claims estimate \hat{U} :

$$
\hat{U}=C_{k}+\hat{R}
$$

\diamond Bornhuetter/Ferguson method

- Reserve estimate based on the a priori expectation of ultimates losses:

$$
R_{B F}=q_{k} U_{0}
$$

- Using the general relationship described earlier, $U_{B F}=C_{k}+R_{B F}$
- Since $R_{B F}$ uses U_{0}, it assumes the current claims amount C_{k} is not predictive of future claims

\diamond Chain ladder method

- $U_{C L}=C_{k} / p_{k}$
- Using the general relationship described earlier, $R_{C L}=U_{C L}-C_{k}$
- Combining the two previous formulae, it can be shown that

$$
R_{C L}=q_{k} U_{C L}
$$

- Since $R_{C L}$ uses $U_{C L}$, it assumes the current claims amount C_{k} is fully predictive of future claims
- Advantage of $\boldsymbol{C L}$ over $B \boldsymbol{B F}$: Using $C L$, different actuaries obtain similar results. This is not the case with $B F$ due to differences in the selection of U_{0}

\diamond Benktander method

- Also known as Iterated Bornhuetter/Ferguson method
- Since $C L$ and $B F$ represent extreme positions (fully believe C_{k} vs. do not believe at all), Benktander replaced U_{0} with a credibility mixture:

$$
U_{c}=c U_{C L}+(1-c) U_{0}
$$

- As the claims C_{k} develop, credibility should increase. As a result, Benktander proposed setting $c=p_{k}$ and estimating the claims reserve by $R_{G B}=R_{B F} \cdot \frac{U_{p_{k}}}{U_{0}}$
- Combining this with the formula for $R_{B F}$, we can easily show that $R_{G B}=q_{k} U_{p_{k}}$
- Using our credibility mixture, we can show that $U_{p_{k}}=p_{k} U_{C L}+q_{k} U_{0}=C_{k}+R_{B F}=$ $U_{B F}$, which finally brings us to the following:

$$
R_{G B}=q_{k} U_{B F}
$$

- This equation has the following implications:
$\diamond R_{G B}$ is obtained by applying the $B F$ procedure twice, first to U_{0}, and then to $U_{B F}$ (hence, the Iterated Bornhuetter/Ferguson method)
\diamond The Benktander method is a credibility weighted average of the $B F$ method and the $C L$ method, where $c=p_{k}=1-q_{k}$:

$$
\begin{aligned}
U_{G B} & =C_{k}+R_{G B} \\
& =\left(1-q_{k}\right) U_{C L}+q_{k} U_{B F}
\end{aligned}
$$

- Note: $U_{G B}=C_{k}+R_{G B}=\left(1-q_{k}^{2}\right) U_{C L}+q_{k}^{2} U_{0}=U_{1-q_{k}^{2}} \neq U_{p_{k}}$, which illustrates the fact that the $B F$ method and $G B$ produce different results. It also shows that the Benktander method is a credibility weighted average of the $C L$ method and the a priori expectation of ultimate losses, where $c=1-q_{k}^{2}$
- It is also possible to apply the credibility mixture directly to the reserves instead of the ultimates. Esa Hovinen proposed the following reserve estimate: $R_{E H}=c R_{C L}+$ $(1-c) R_{B F}$. If we set $c=p_{k}$ as before, we find that $R_{E H}=R_{G B}$
\diamond In his paper, Mack presents a theorem that shows how ultimates and reserves change as we iterate through indefinitely (rather than just iterating twice for the $G B$ method). Since I don't think it's worth memorizing for the exam, let's just get to the results. Using the iteration rules $R^{(m)}=q_{k} U^{(m)}$ and $U^{(m+1)}=C_{k}+q_{k} U^{(m)}$, we obtain the following credibility mixtures:

$$
\begin{aligned}
& U^{(m)}=\left(1-q_{k}^{m}\right) U_{C L}+q_{k}^{m} U_{0} \\
& R^{(m)}=\left(1-q_{k}^{m}\right) R_{C L}+q_{k}^{m} R_{B F}
\end{aligned}
$$

\diamond If we iterate between reserves and ultimates indefinitely, we will eventually end up with the $C L$ result
\diamond The Benktander method is superior to $B F$ and $C L$ for a few reasons:

- Lower mean squared error (MSE)
\diamond Walter Neuhaus compared the MSE of $R_{c}=c R_{C L}+(1-c) R_{B F}$ for $c=0(B F)$, $c=p_{k}(G B)$, and $c=c^{*}$ (optimal credibility reserve that minimizes the MSE)
\diamond MSE of $R_{G B}$ is smaller than MSE of $R_{B F}$ when $c^{*}>p_{k} / 2$. This makes sense because the inequality implies that c^{*} is closer to $c=p_{k}$ than to $c=0$
\diamond Mack also states in the abstract that the Benktander method almost always has a smaller MSE than $B F$ and $C L$

- Better approximation of the exact Bayesian procedure

- Superior to $C L$ since it gives more weight to the a priori expectation of ultimate losses
- Superior to $B F$ since it gives more weight to actual loss experience

Original Mathematical Problems \& Solutions

MP \#1
Given the following information for accident year 2012 as of December 31, 2012:
$\diamond 12$-ultimate cumulative paid $\mathrm{LDF}=1.60$
\diamond Ultimate loss based on the chain-ladder method $=\$ 12,000$
\diamond Ultimate loss based on the Benktander method $=\$ 14,000$
Calculate the accident year 2012 ultimate loss based on the Bornhuetter/Ferguson method.

Solution:

$\diamond U_{G B}=\left(1-q_{k}\right) U_{C L}+q_{k} U_{B F}$
$\diamond q_{k}=1-p_{k}=1-\frac{1}{\mathrm{LDF}}=1-\frac{1}{1.6}=0.375$
\diamond Plugging q_{k} into our formula for $U_{G B}$, we have $14000=(1-0.375) 12000+0.375\left(U_{B F}\right)$
\diamond Thus, $U_{B F}=\$ 17,333.33$

MP \#2

Given the following:

	Cumulative Paid Losses (\$)			
AY	12 mo.	24 mo	36 mo.	48 mo.
2009	7,000	10,500	12,600	13,860
2010	8,000	12,000	14,400	
2011	9,000	13,500		
2012	10,000			

\diamond The 2010 earned premium is $\$ 25,000$
\diamond The expected loss ratio for each year is 75%
\diamond Assume the 48-ultimate loss development factor is 1.05
Calculate the accident year 2010 ultimate loss based on the Benktander method.

Solution:

$\diamond U_{G B}=C_{k}+R_{G B}$
\diamond From the loss triangle, $C_{k}=14400$
\diamond We need to calculate $R_{G B}=q_{k} U_{B F}$
\diamond To determine q_{k}, we need to calculate the 36 -ultimate LDF:

- The $36-48$ LDF is $13860 / 12600=1.10$
- Combining this with the 48 -ultimate LDF gives a 36 -ultimate LDF of $(1.10)(1.05)=$ 1.155
- Then, $q_{k}=1-\frac{1}{1.155}=0.134$
\diamond To determine $U_{B F}$, we need to calculate U_{0} for 2010:
- $U_{0}=E P \cdot E L R=25000(0.75)=18750$
- $U_{B F}=C_{k}+R_{B F}=C_{k}+q_{k} U_{0}=14400+0.134(18750)=16912.50$
\diamond We can now calculate $R_{G B}=0.134(16912.50)=2266.275$
\diamond Finally, $U_{G B}=14400+2266.275=\$ 16,666.28$

MP \#3

Given the following information for accident year 2012 as of December 31, 2012:

$$
\begin{aligned}
& \diamond U_{0}=\$ 5,000 \\
& \diamond C_{k}=\$ 3,000 \\
& \diamond q_{k}=0.60
\end{aligned}
$$

a) Calculate $U^{(3)}$.
b) Calculate $U^{(\infty)}$.

Solution to part a:

$$
\begin{aligned}
& \diamond U^{(1)}=U_{B F}=C_{k}+q_{k} U_{0}=3000+0.6(5000)=6000 \\
& \diamond U^{(2)}=U_{G B}=C_{k}+q_{k} U_{B F}=3000+0.6(6000)=6600 \\
& \diamond U^{(3)}=C_{k}+q_{k} U_{G B}=3000+0.6(6600)=\$ 6,960
\end{aligned}
$$

Solution to part b:

$$
\diamond U^{(\infty)}=U_{C L}=C_{k} / p_{k}=3000 /(1-0.6)=\$ 7,500
$$

MP \#4

Given the following information for accident year 2012 as of December 31, 2012:
$\diamond 12$-ultimate cumulative paid $\operatorname{LDF}=2.50$
\diamond Reserve based on the chain-ladder method $=\$ 4,000$
\diamond Ultimate loss based on the Benktander method $=\$ 8,000$
Using a credibility weight of $c=p_{k}$, calculate the accident year 2012 Esa Hovinen reserve.

Solution:

\diamond When $c=p_{k}, R_{E H}=R_{G B}=U_{G B}-C_{k}$
\diamond To determine C_{k} :

- $R_{C L}=q_{k} U_{C L}$
- $U_{C L}=4000 /\left(1-\frac{1}{2.5}\right)=6666.667$
- Thus, $C_{k}=U_{C L}-R_{C L}=6666.667-4000=2666.667$
\diamond Plugging C_{k} into our formula for $R_{E H}$, we find that $R_{E H}=8000-2666.667=\$ 5,333.33$

Mack (2000)

MP \#5

Given the following information for accident year 2012 as of December 31, 2012:
$\diamond c^{*}=0.32$
$\diamond C_{k}=\$ 3,000$
$\diamond U_{C L}=\$ 5,000$
Which reserve has a smaller MSE: $R_{G B}$ or $R_{B F}$?

Solution:

$\diamond U_{C L}=C_{k} / p_{k}$. Thus, $p_{k}=0.6$
\diamond If $c^{*}>p_{k} / 2, R_{G B}$ has a smaller MSE
\diamond Checking the condition above, $0.32>0.6 / 2$
\diamond Thus, $R_{G B}$ has a smaller MSE

Past CAS Exam Problems \& Solutions

$2018 \# 5$

Given the following information about accident year 2017 as of December 31, 2017:
\diamond Accident year 2017 paid loss $=\$ 850,000$
$\diamond 2017$ earned premium $=\$ 4,000,000$
\diamond Initial expected loss ratio $=67.5 \%$
$\diamond 12-24$ month incremental paid link ratio $=1.60$
$\diamond 12$-ultimate cumulative paid $\mathrm{LDF}=3.00$
a) Determine the accident year 2017 incremental paid loss in 2018 that would result in the Benktander ultimate loss estimate being $\$ 100,000$ less than the Bornhuetter-Ferguson ultimate loss estimate for accident year 2017 as of December 31, 2018. Assume all development factors are unchanged.
b) Briefly describe when the Benktander ultimate loss estimate would be greater than the Bornhuetter-Ferguson ultimate loss estimate as of December 31, 2018.
c) Explain why it may not be appropriate to use the Bornhuetter-Ferguson method when losses develop downward.

Solution to part a:

$\diamond U_{B F}=C_{K}+U_{0} q_{k}=(850+x)+4000(0.675)\left(1-\frac{1}{3 / 1.6}\right)=2110+x$. Notice here that we are dividing 3 by 1.6 to obtain the cumulative paid LDF at 24 months
$\diamond U_{G B}=C_{k}+U_{B F} q_{k}=(850+x)+(2110+x)\left(1-\frac{1}{3 / 1.6}\right)$. Since we want $U_{G B}$ to be 100,000 less than $U_{B F}$, we have $(850+x)+(2110+x)\left(1-\frac{1}{3 / 1.6}\right)=2110+x-100$. Thus, $x=\$ 375,714$

Solution to part b:

\diamond Since the Benktander estimate is a weighting of the CL estimate and the BF estimate, the Benktander estimate is greater than the BF estimate when the CL estimate is greater than the BF estimate

Solution to part c:

\diamond Since the BF IBNR does not respond to actual loss performance, the downward development will not affect IBNR produced by the BF method. If the downward development represents real trends (such as increased salvage and subrogation), then the BF method will overstate the IBNR

2013 \#4

Given the following information:

	Cumulative Paid Loss (\$000)			
AY	12 mo.	24 mo	36 mo.	48 mo.
2009	5,751	10,640	11,491	12,181
2010	5,528	9,287	10,680	
2011	4,120	7,004		
2012	5,304			

	Calculated Ultimate Loss (\$000)	
Accident Year	Bornhuetter/Ferguson Ultimate	Benktander Ultimate
2009	12,181	12,181
2010	11,246	11,316
2011	8,428	8,204
2012	10,403	10,609

a) Calculate the 24 -month-to-ultimate cumulative development factor that would result in the ultimate loss estimates shown above.
b) For accident year 2011, suppose that the Bornhuetter/Ferguson method is performed over multiple iterations. Deduce the ultimate loss estimate that will be produced as the number of iterations approaches infinity.

Solution to part a:

\diamond Since we want to calculate the 24-ultimate development factor, let's look at AY 2011
$\diamond U_{G B}=C_{k}+q_{k} U_{B F}$
$\diamond 8204=7004+q_{k}(8428)$
$\diamond q_{k}=0.142$
$\diamond 0.142=1-\frac{1}{L D F_{24-u l t}}$
\diamond Thus, $L D F_{24-u l t}=1.166$

Solution to part b:

\diamond As the number of Bornhuetter/Ferguson iterations approaches infinity, the chain-ladder ultimate loss estimate will be produced

2012 \#1

Given the following information for accident year 2011 as of December 31, 2011:
\diamond Accident year 2011 paid loss $=\$ 700,000$
$\diamond 2011$ earned premium $=\$ 3,000,000$
\diamond Initial expected loss ratio $=62.5 \%$
\diamond 12-24 month paid link ratio $=1.50$
$\diamond 12$-ultimate cumulative paid $\mathrm{LDF}=2.50$
a) Calculate accident year 2011 ultimate loss estimates as of December 31, 2011 using each of the following three methods:
\diamond Chain ladder
\diamond Bornhuetter/Ferguson
\diamond Benktander
b) Determine the accident year 2011 incremental paid loss in 2012 that would result in the Benktander ultimate loss estimate being $\$ 50,000$ greater than the Bornhuetter/Ferguson ultimate loss estimate for accident year 2011, as of December 31, 2012. Assume all selected development factors remain the same.

Solution to part a:

\diamond Chain-ladder

- $U_{C L}=700000(2.5)=\$ 1,750,000$
\diamond Bornhuetter/Ferguson
- $U_{B F}=C_{k}+q_{k} U_{0}=700000+(1-1 / 2.5)(3000000)(0.625)=\$ 1,825,000$
\diamond Benktander
- $U_{G B}=C_{k}+q_{k} U_{B F}=7000000+(1-1 / 2.5)(1825000)=\$ 1,795,000$

Solution to part b:

$\diamond U_{G B}=U_{B F}+50000$
$\diamond C_{k}+q_{k} U_{B F}=U_{B F}+50000$
$\diamond C_{k}-50000=U_{B F}\left(1-q_{k}\right)$
\diamond Let the incremental paid loss in 2012 for AY 2011 be x
$\diamond 700000+x-50000=U_{B F}\left(1-q_{k}\right)$
$\diamond 650000+x=U_{B F}\left(p_{k}\right)$
$\diamond 650000+x=U_{B F}\left(\frac{1}{L D F_{24-u l t}}\right)$
$\diamond 650000+x=U_{B F}\left(\frac{1}{2.5 / 1.5}\right)$
$\diamond 650000+x=U_{B F}(0.6)$
$\diamond 650000+x=\left(C_{k}+q_{k} U_{0}\right)(0.6)$
$\diamond 650000+x=(700000+x+0.4(3000000)(0.625))(0.6)$
$\diamond 650000+x=870000+0.6 x$
$\diamond 0.4 x=220000$
$\diamond x=\$ 550,000$

Hürlimann

Outline

I. Introduction

\diamond Hürlimann's method is inspired by the Benktander method
\diamond A couple of differences between Hürlimann's method and the Benktander method:

- Hürlimann's method is based on a full development triangle, whereas the Benktander method is based on a single origin period (i.e. accident year or underwriting year)
- Hürlimann's method requires a measure of exposure for each origin period (i.e. premiums)
\diamond Unlike standard reserving methods that rely on link ratios to determine reserves (chainladder, Bornhuetter/Ferguson, Cape Cod), Hürlimann's method relies on loss ratios
\diamond The main result of the method is that it provides an optimal credibility weight for combining the chain-ladder or individual loss ratio reserve (grossed up latest claims experience of an origin period) with the Bornhuetter/Ferguson or collective loss ratio reserve (experience based burning cost estimate of the total ultimate claims of an origin period)

II. The Collective and Individual Loss Ratio Claims Reserves

\diamond Notation

- p_{i} is the proportion of the total ultimate claims from origin period i expected to be paid in development period $n-i+1$ (known as the loss ratio payout factor or loss ratio lag-factor)
- $q_{i}=1-p_{i}$ is the proportion of the total ultimate claims from origin period i which remain unpaid in development period $n-i+1$ (known as the loss ratio reserve factor)
- $U_{i}^{B C}=U_{i}^{(0)}$ is the burning cost of the total ultimate claims for origin period i
- $U_{i}^{\text {coll }}=U_{i}^{(1)}$ is the collective total ultimate claims for origin period i
- $U_{i}^{\text {ind }}=U_{i}^{(\infty)}$ is the individual total ultimate claims for origin period i
- $U_{i}^{(m)}$ is the ultimate claim estimate at the $m^{\text {th }}$ iteration for origin period i
- $R_{i}^{\text {coll }}$ is the collective loss ratio claims reserve for origin period i
- $R_{i}^{\text {ind }}$ is the individual loss ratio claims reserve for origin period i

Hürlimann

- R_{i}^{c} is the credible loss ratio claims reserve
- $R_{i}^{G B}$ is the Benktander loss ratio claims reserve
- $R_{i}^{W N}$ is the Neuhaus loss ratio claims reserve
- R_{i} is the i-th period claims reserve for origin period i
- R is the total claims reserve
- m_{k} is the expected loss ratio in development period k
- n is the number of origin periods
- V_{i} is the premium belonging to origin period i
- $S_{i k}$ are the paid claims from origin period i as of k years of development where $1 \leq$ $i, k \leq n$
- $C_{i k}$ are the cumulative paid claims from origin period i as of k years of development
\diamond Assuming that after n development periods all claims incurred in an origin period are known and closed, the total ultimate claims from origin period i are:

$$
\sum_{k=1}^{n} S_{i k}
$$

\diamond Cumulative paid claims

$$
C_{i k}=\sum_{j=1}^{k} S_{i j}
$$

$\diamond i$-th period claims reserve

- The required amount for the incurred but unpaid claims of origin period i

$$
R_{i}=\sum_{k=n-i+2}^{n} S_{i k}
$$

where $i=2, \ldots, n$

Hürlimann

\diamond Total claims reserve

- The total amount of incurred but unpaid claims over all periods

$$
R=\sum_{i=2}^{n} R_{i}
$$

\diamond Expected loss ratio

- The incremental amount of expected paid claims per unit of premium in each development period (i.e. an incremental loss ratio)

$$
m_{k}=\frac{E\left[\sum_{i=1}^{n-k+1} S_{i k}\right]}{\sum_{i=1}^{n-k+1} V_{i}}
$$

where $k=1, \ldots, n$
\diamond Expected value of the burning cost of the total ultimate claims

- This quantity is similar to the prior estimate U_{0} from Mack (2000)

$$
E\left[U_{i}^{B C}\right]=V_{i} \cdot \sum_{k=1}^{n} m_{k}
$$

- By summing up the m_{k} 's (the incremental loss ratios), we obtain an overall expected loss ratio. When we multiply the overall expected loss ratio by the premium V_{i}, we obtain an expected loss for each origin period
\diamond Loss ratio payout factor
- Represents the percent of losses emerged to date for each origin period

$$
\begin{aligned}
p_{i}= & \frac{V_{i} \cdot \sum_{k=1}^{n-i+1} m_{k}}{E\left[U_{i}^{B C}\right]} \\
= & \frac{\sum_{k=1}^{n-i+1} m_{k}}{\sum_{k=1}^{n} m_{k}}
\end{aligned}
$$

\diamond Individual total ultimate claims

- Obtained by grossing up the latest cumulative paid claims for an origin period
- Considered "individual" since it depends on the individual latest claims experience of an origin period
- This estimate is similar to the chain-ladder (CL) estimate from Mack (2000)

$$
U_{i}^{i n d}=\frac{C_{i, n-i+1}}{p_{i}}
$$

\diamond Individual loss ratio claims reserve

$$
\begin{aligned}
R_{i}^{\text {ind }} & =U_{i}^{i n d}-C_{i, n-i+1} \\
& =q_{i} \cdot U_{i}^{i n d} \\
& =\frac{q_{i}}{p_{i}} \cdot C_{i, n-i+1}
\end{aligned}
$$

\diamond Collective loss ratio claims reserve

- Obtained by using the burning cost of the total ultimate claims
- Considered "collective" since it depends on the portfolio claims experience of all origin periods

$$
R_{i}^{\text {coll }}=q_{i} \cdot U_{i}^{B C}
$$

\diamond Collective total ultimate claims

- This estimate is similar to the Bornhuetter/Ferguson (BF) estimate from Mack (2000)

$$
U_{i}^{\text {coll }}=R_{i}^{\text {coll }}+C_{i, n-i+1}
$$

\diamond An advantage of the collective loss ratio claims reserve over the BF reserve is that different actuaries always come to the same results provided they use the same premiums

III. Credible Loss Ratio Claims Reserve

\diamond The individual and collective loss ratio claims reserve estimates represent extreme positions

- The individual claims reserve assumes that the cumulative paid claims amount $C_{i, n-i+1}$ is fully credible for future claims and ignores the burning $\operatorname{cost} U_{i}^{B C}$ of the total ultimate claims
- The collective claims reserve ignores the cumulative paid claims and relies fully on the burning cost

\diamond Credible loss ratio claims reserve

- Mixture of the individual and collective loss ratio reserves

$$
R_{i}^{c}=Z_{i} \cdot R_{i}^{\text {ind }}+\left(1-Z_{i}\right) \cdot R_{i}^{\text {coll }}
$$

where Z_{i} is the credibility weight given to the individual loss ratio reserve
\diamond Benktander loss ratio claims reserve

- Obtained by setting $Z_{i}=Z_{i}^{G B}=p_{i}$

$$
R_{i}^{G B}=p_{i} \cdot R_{i}^{\text {ind }}+q_{i} \cdot R_{i}^{\text {coll }}
$$

\diamond Neuhaus loss ratio claims reserve

- Obtained by setting $Z_{i}=Z_{i}^{W N}=\sum_{k=1}^{n-i+1} m_{k}=p_{i} \cdot \sum_{k=1}^{n} m_{k}$

$$
R_{i}^{W N}=Z_{i}^{W N} \cdot R_{i}^{\text {ind }}+\left(1-Z_{i}^{W N}\right) \cdot R_{i}^{\text {coll }}
$$

\diamond At this point in the paper, Hürlimann restates the theorem from Mack (2000) that shows how ultimates and reserves change as we iterate between them
\diamond Using the iteration rules $R_{i}^{(m)}=q_{i} U_{i}^{(m)}$ and $U_{i}^{(m+1)}=C_{i, n-i+1}+q_{i} U_{i}^{(m)}$, we obtain the following credibility mixtures:

$$
\begin{aligned}
& U_{i}^{(m)}=\left(1-q_{i}^{m}\right) U_{i}^{\text {ind }}+q_{i}^{m} U_{i}^{0} \\
& R_{i}^{(m)}=\left(1-q_{i}^{m}\right) R_{i}^{\text {ind }}+q_{i}^{m} R_{i}^{0}
\end{aligned}
$$

\diamond Once again, if we iterate between reserves and ultimates indefinitely, we eventually end up with the individual loss ratio estimate for ultimate claims.

IV. The Optimal Credibility Weights and the Mean Squared Error

\diamond The optimal credibility weights Z_{i}^{*} which minimize the mean squared error mse $\left(R_{i}^{c}\right)=$ $E\left[\left(R_{i}^{c}-R_{i}\right)^{2}\right]$ are given by:

$$
Z_{i}^{*}=\frac{p_{i}}{p_{i}+t_{i}}
$$

where $t_{i}=\frac{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right]}{\operatorname{Var}\left(U_{i}^{B C}\right)+\operatorname{Var}\left(U_{i}\right)-E\left[\alpha_{i}^{2}\left(U_{i}\right)\right]}$
\diamond In the paper, the author goes into quite a bit of detail on how to estimate the quantities in the formula for t_{i} above. I believe that these details are outside of the scope of the exam and are excluded from this outline
\diamond The weights Z_{i}^{*} which minimize the mean squared error $\operatorname{mse}\left(R_{i}^{c}\right)=E\left[\left(R_{i}^{c}-R_{i}\right)^{2}\right]$ and the variance $\operatorname{Var}\left(R_{i}^{c}\right)$ are obtained by:

$$
t_{i}^{*}=\frac{f_{i}-1+\sqrt{\left(f_{i}+1\right) \cdot\left(f_{i}-1+2 p_{i}\right)}}{2}
$$

\diamond Note that f_{i} comes from an assumption the author makes in the paper. He assumes that U_{i} is at least as volatile as the burning cost estimate $U_{i}^{B C}$. Thus, $\operatorname{Var}\left(U_{i}\right)=f_{i} \cdot \operatorname{Var}\left(U_{i}^{B C}\right)$

Hürlimann

\diamond A special case of the formula above is when $f_{i}=1$. This implies that $\operatorname{Var}\left(U_{i}\right)=\operatorname{Var}\left(U_{i}^{B C}\right)$.
In this case, t_{i} can be estimated by

$$
t_{i}^{*}=\sqrt{p_{i}}
$$

This is the case I expect to see on the exam. Thus, unless told otherwise, assume that $t_{i}=t_{i}^{*}=\sqrt{p_{i}}$. Note that the online CAS text references provide two different versions of this paper. Each version of the paper has a different version of the formula above. If you navigate to the online text references and click on the first link under Hürlimann, you will find that $t_{i}^{*}=\sqrt{p_{i}}$. If you download the "complete PDF of online text references," it provides the second version of this paper with a different formula for t_{i}^{*}. Given that $t_{i}^{*}=\sqrt{p_{i}}$ is what is shown in all of the solutions on prior exams, I recommend using this version of the formula
\diamond Since $t_{i}^{*}=\sqrt{p_{i}} \leq 1, Z_{i}^{*} \leq \frac{1}{2}$
\diamond According to the author, this special case is appealing because it yields the smallest credibility weights for the individual loss reserves, which places more emphasis on the collective loss reserves (I say "According to the author" because this is not correct. As f increases from $f=1$, the credibility Z actually decreases, placing less weight on the individual loss reserves. If this comes up as a short answer question on the exam, stick with what the author says)
\diamond The mean squared error for the credible loss ratio reserve is given by:

$$
\operatorname{mse}\left(R_{i}^{c}\right)=E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{Z_{i}^{2}}{p_{i}}+\frac{1}{q_{i}}+\frac{\left(1-Z_{i}\right)^{2}}{t_{i}}\right] \cdot q_{i}^{2}
$$

\diamond The mean squared errors for the collective and individual loss ratios reserves can be obtained by setting Z_{i} equal to 0 and 1 , respectively

V. Example

\diamond Given the following incremental losses:

		Dev. Period		
i	$V_{i}=$ Premium	1	2	3
1	15	10	4	2
2	20	6	5	
3	22	8		

\diamond Calculate the following parameters:

i or k	m_{k}	$p_{i}=Z_{i}^{G B}$	q_{i}	t_{i}^{*}	Z_{i}^{*}	$Z_{i}^{W N}$
1	0.421	1.000	0.000	1.000	0.500	0.811
2	0.257	0.836	0.164	0.914	0.478	0.678
3	0.133	0.519	0.481	0.720	0.419	0.421

\diamond Here are the underlying calculations:

- $m_{k}=\frac{E\left[\sum_{i=1}^{n-k+1} S_{i k}\right]}{\sum_{i=1}^{n-k+1} V_{i}}$
$\diamond m_{1}=\frac{10+6+8}{15+20+22}=0.421$
$\diamond m_{2}=\frac{4+5}{15+20}=0.257$
$\diamond m_{3}=\frac{2}{15}=0.133$
- $p_{i}=\frac{\sum_{k=1}^{n-i+1} m_{k}}{\sum_{k=1}^{n} m_{k}}$
$\diamond p_{1}=\frac{0.421+0.257+0.133}{0.421+0.257+0.133}=1.000$
$\diamond p_{2}=\frac{0.421+0.257}{0.421+0.257+0.133}=0.836$
$\diamond p_{3}=\frac{0.421}{0.421+0.257+0.133}=0.519$
- $q_{i}=1-p_{i}$
$\diamond q_{1}=1-1=0.000$
$\diamond q_{2}=1-0.836=0.164$
$\diamond q_{3}=1-0.519=0.481$
- $t_{i}^{*}=\sqrt{p_{i}}\left(\right.$ assumes that $\left.\operatorname{Var}\left(U_{i}\right)=\operatorname{Var}\left(U_{i}^{B C}\right)\right)$
$\diamond t_{1}^{*}=\sqrt{1}=1.000$
$\diamond t_{2}^{*}=\sqrt{0.836}=0.914$
$\diamond t_{3}^{*}=\sqrt{0.519}=0.720$
- $Z_{i}^{*}=\frac{p_{i}}{p_{i}+t_{i}^{*}}$
$\diamond Z_{1}^{*}=\frac{1}{1+1}=0.500$
$\diamond Z_{2}^{*}=\frac{0.836}{0.836+0.914}=0.478$
$\diamond Z_{3}^{*}=\frac{0.519}{0.519+0.720}=0.419$

Hürlimann

- $Z_{i}^{W N}=\sum_{k=1}^{n-i+1} m_{k}$
$\diamond Z_{1}^{W N}=0.421+0.257+0.133=0.811$
$\diamond Z_{2}^{W N}=0.421+0.257=0.678$
$\diamond Z_{3}^{W N}=0.421$
\diamond Calculate the reserves:

i	Collective	Individual	Neuhaus	Benktander	Optimal
2	2.660	2.158	2.320	2.240	2.420
3	8.582	7.414	8.090	7.976	8.093

\diamond Here are the underlying calculations for the collective, individual, and Neuhaus reserves for origin period 2:

- Collective $=q_{i} \cdot U_{i}^{B C}=0.164(20)(0.421+0.257+0.133)=2.660($ similar to BF)
- Individual $=\frac{C_{i, n-i+1}}{p_{i}}-C_{i, n-i+1}=\frac{6+5}{0.836}-(6+5)=2.158$ (similar to CL)
- Neuhaus $=Z_{i}^{W N} \cdot R_{i}^{\text {ind }}+\left(1-Z_{i}^{W N}\right) \cdot R_{i}^{\text {coll }}=0.678(2.158)+(1-0.678)(2.660)=2.320$
\diamond Calculate the relative MSE's for each method (i.e. divide each method's MSE by the optimal MSE):

i	Collective	Individual	Neuhaus	Benktander	Optimal
2	1.078	1.094	1.014	1.044	1.000
3	1.202	1.388	1.000	1.012	1.000

\diamond Here are the underlying calculations for the collective, individual, and Neuhaus reserves for origin period 2:

- Collective $=\frac{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0^{2}}{0.836}+\frac{1}{0.164}+\frac{(1-0)^{2}}{0.914}\right] \cdot 0.164^{2}}{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.478^{2}}{0.836}+\frac{1}{0.164}+\frac{(1-0.47)^{2}}{0.914}\right] \cdot 0.164^{2}}=1.078$
- Individual $=\frac{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{1^{2}}{0.836}+\frac{1}{0.164}+\frac{(1-1)^{2}}{0.944}\right] \cdot 0.164^{2}}{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.478^{2}}{0.836}+\frac{1}{0.164}+\frac{(1-0.47)^{2}}{0.914}\right] \cdot 0.164^{2}}=1.094$
- Neuhaus $=\frac{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.678^{2}}{0.036}+\frac{1}{0.164}+\frac{(1-0.678)^{2}}{0.994}\right] \cdot 0.164^{2}}{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.478^{2}}{0.836}+\frac{1}{0.164}+\frac{(1-0.478)^{2}}{0.914}\right] \cdot 0.164^{2}}=1.014$
\diamond Using the relative MSE table, it's clear that the Neuhaus reserve best matches the optimal credible reserve

Hürlimann

VI. Reinterpreting the Methods from Mack (2000)

\diamond Note: In this section, the author is making connections between this paper and the Mack (2000) paper. Thus, we are using the standard age-to-age factors in this section
\diamond Let $f_{k}^{C L}=\frac{\sum_{i=1}^{n-k} C_{i, k+1}}{\sum_{i=1}^{n-k} C_{i k}}$. These are the chain-ladder age-to-age factors
\diamond Let $F_{k}^{C L}=\prod_{j=k}^{n-1} f_{j}^{C L}$. These are the chain-ladder age-to-ultimate factors
\diamond Let $p_{i}^{C L}=\frac{1}{F_{n-i+1}^{C L}}$. These are the chain-ladder lag-factors
\diamond Let $q_{i}^{C L}=1-p_{i}^{C L}$. These are the chain-ladder reserve factors

\diamond Chain-ladder method

- This is the individual loss ratio method with loss ratio lag-factors replaced by the chain-ladder lag-factors:

$$
R_{i}^{C L}=\frac{q_{i}^{C L}}{p_{i}^{C L}} \cdot C_{i, n-i+1}
$$

\diamond Cape Cod method

- Benktander-type credibility mixture with the following components:

$$
\begin{aligned}
R_{i}^{\text {ind }} & =\frac{q_{i}^{C L}}{p_{i}^{C L}} \cdot C_{i, n-i+1} \\
R_{i}^{\text {coll }} & =q_{i}^{C L} \cdot L R \cdot V_{i} \\
Z_{i} & =p_{i}^{C L}
\end{aligned}
$$

where $L R=\frac{\sum_{i=1}^{n} C_{i, n-i+1}}{\sum_{i=1}^{n} p_{i}^{C L} \cdot V_{i}}$

- Note: The credibility mixture above does not equal the Cape Cod method. Instead, the collective reserves defined above equal the standard Cape Cod reserves. Thus, the credibility estimate is mixture of the chain-ladder reserve estimate and the standard Cape Cod reserve estimate

\diamond Optimal Cape Cod method

- Identical to the Cape Cod method, but with the following credibility weights:

$$
Z_{i}=\frac{p_{i}^{C L}}{p_{i}^{C L}+\sqrt{p_{i}^{C L}}}
$$

Hürlimann

\diamond Bornhuetter/Ferguson method

- Benktander-type credibility mixture with the following components:

$$
\begin{aligned}
R_{i}^{\text {ind }} & =\frac{q_{i}^{C L}}{p_{i}^{C L}} \cdot C_{i, n-i+1} \\
R_{i}^{\mathrm{coll}} & =q_{i}^{C L} \cdot L R_{i} \cdot V_{i} \\
Z_{i} & =p_{i}^{C L}
\end{aligned}
$$

where $L R_{i}$ is some selected initial loss ratio for each origin period

- Note: The credibility mixture above does not equal the BF method. Instead, the collective reserves defined above equal the standard BF reserves. Thus, the credibility estimate is mixture of the chain-ladder reserve estimate and the standard BF reserve estimate
\diamond Optimal Bornhuetter/Ferguson method
- Identical to the Bornhuetter/Ferguson method, but with the following credibility weights:

$$
Z_{i}=\frac{p_{i}^{C L}}{p_{i}^{C L}+\sqrt{p_{i}^{C L}}}
$$

Original Mathematical Problems \& Solutions

MP \#1
Given the following:
$\diamond U_{2}^{\text {ind }}=\$ 5,000$
$\diamond C_{2,3}=\$ 4,500$
$\diamond q_{2}=0.10$
$\diamond n=4$
Calculate $R_{2}^{\text {ind }}$ in three different ways.

Hürlimann

Solution:

\diamond Method 1:

- $R_{2}^{\text {ind }}=U_{2}^{\text {ind }}-C_{2,3}=5000-4500=\$ 500$
\diamond Method 2:
- $R_{2}^{\text {ind }}=q_{2} \cdot U_{2}^{\text {ind }}=0.10(5000)=\$ 500$
\diamond Method 3:
- $R_{2}^{\text {ind }}=\frac{q_{2} \cdot C_{2,3}}{1-q_{2}}=\frac{0.10(4500)}{1-0.10}=\$ 500$

Hürlimann

MP \#2
Given the following:

		Incremental Incurred Losses (\$)			
AY	Earned Premium(\$)	12 mo	24 mo	36 mo.	48 mo.
2009	7,000	4,000	2,000	500	200
2010	7,500	3,000	2,500	600	
2011	8,000	4,500	1,500		
2012	8,500	5,000			

a) Estimate the AY 2011 ultimate losses using the collective loss ratio method.
b) Estimate the AY 2011 ultimate losses using the individual loss ratio method.
c) Estimate the AY 2011 ultimate losses using the Neuhaus method.
d) Estimate the AY 2011 ultimate losses using the Benktander method.
e) Estimate the AY 2011 ultimate losses using the optimal credibility weights that minimize the variance of the credible claims reserve. Assume that $\operatorname{Var}\left(U_{i}\right)=\operatorname{Var}\left(U_{i}^{B C}\right)$.
f) Use relative MSE's to explain which method in parts a. - d. best matches the optimal reserve calculated in part e.

Hürlimann

Solution to part a:

\diamond Calculate the m_{k} 's:

- We know that $m_{k}=\frac{E\left[\sum_{i=1}^{n-k+1} S_{i k}\right]}{\sum_{i=1}^{n-k+1} V_{i}}$
- Thus, we can create the following table:

k	m_{k}
1	$0.532=\frac{4000+3000+4500+5000}{7000+7500++8000+8500}$
2	$0.267=\frac{2000+2500+500}{7000+7500+8000}$
3	0.076
4	0.029

\diamond Calculate $E\left[U_{3}^{B C}\right]$:

- We know that $E\left[U_{i}^{B C}\right]=V_{i} \cdot \sum_{k=1}^{n} m_{k}$
- Thus, $E\left[U_{3}^{B C}\right]=8000(0.532+0.267+0.076+0.029)=7232$
\diamond Calculate $R_{3}^{\text {coll }}$:
- We know that $R_{i}^{\text {coll }}=q_{i} \cdot U_{i}^{B C}$
- $p_{i}=\frac{\sum_{k=1}^{n-i+1} m_{k}}{\sum_{k=1}^{n} m_{k}}$
- Thus, $p_{3}=\frac{0.532+0.267}{0.532+0.267+0.076+0.029}=0.884$ and $q_{3}=1-p_{3}=0.116$
- Thus, $R_{3}^{\text {coll }}=q_{3} \cdot U_{3}^{B C}=0.116(7232)=838.912$
\diamond Calculate $U_{3}^{\text {coll }}$:
- $U_{3}^{\text {coll }}=R_{3}^{\text {coll }}+C_{3,2}=838.912+(4500+1500)=\$ 6,838.91$

Solution to part b:

\diamond Calculate $R_{3}^{\text {ind }}$:

- We know that $R_{i}^{\text {ind }}=\frac{q_{i}}{p_{i}} \cdot C_{i, n-i+1}$
- Thus, $R_{3}^{\text {ind }}=\frac{q_{3}}{p_{3}} \cdot C_{3,2}=\frac{0.116}{0.884}(4500+1500)=787.33$
\diamond Calculate $U_{3}^{\text {ind }}$:
- $U_{3}^{\text {ind }}=R_{3}^{i n d}+C_{3,2}=787.33+(4500+1500)=\$ 6,787.33$

Hürlimann

Solution to part c:

\diamond Calculate $Z_{3}^{W N}$:

- We know that $Z_{i}^{W N}=\sum_{k=1}^{n-i+1} m_{k}$
- Thus, $Z_{3}^{W N}=0.532+0.267=0.799$
\diamond Calculate $R_{3}^{W N}$:
- We know that $R_{i}^{W N}=Z_{i}^{W N} \cdot R_{i}^{\text {ind }}+\left(1-Z_{i}^{W N}\right) \cdot R_{i}^{\text {coll }}$
- Thus, $R_{3}^{W N}=Z_{3}^{W N} \cdot R_{3}^{\text {ind }}+\left(1-Z_{3}^{W N}\right) \cdot R_{3}^{\text {coll }}=0.799(787.33)+(1-0.799)(838.912)=$ 797.698
\diamond Calculate $U_{3}^{W N}$:
- $U_{3}^{W N}=R_{3}^{W N}+C_{3,2}=797.698+(4500+1500)=\$ 6,797.70$

Solution to part d:

\diamond Calculate $R_{3}^{G B}$:

- We know that $R_{i}^{G B}=p_{i} \cdot R_{i}^{\text {ind }}+q_{i} \cdot R_{i}^{\text {coll }}$
- Thus, $R_{3}^{G B}=p_{3} \cdot R_{3}^{\text {ind }}+q_{3} \cdot R_{3}^{\text {coll }}=0.884(787.33)+0.116(838.912)=793.314$
\diamond Calculate $U_{3}^{G B}$:
- $U_{3}^{G B}=R_{3}^{G B}+C_{3,2}=793.314+(4500+1500)=\$ 6,793.31$

Solution to part e:

\diamond Calculate Z_{i}^{*} :

- We know that $Z_{i}^{*}=\frac{p_{i}}{p_{i}+t_{i}}$
- Thus, $Z_{3}^{*}=\frac{p_{3}}{p_{3}+t_{3}}=\frac{0.884}{0.884+\sqrt{0.884}}=0.485$
\diamond Calculate the optimal reserves (call these $R_{3}^{o p t}$):
- We know that $R_{i}^{c}=Z_{i} \cdot R_{i}^{\text {ind }}+\left(1-Z_{i}\right) \cdot R_{i}^{\text {coll }}$
- Thus, $R_{3}^{\text {opt }}=Z_{3}^{*} \cdot R_{3}^{\text {ind }}+\left(1-Z_{3}^{*}\right) \cdot R_{3}^{\text {coll }}=0.485(787.33)+(1-0.485)(838.912)=813.895$
\diamond Calculate the optimal ultimate losses (call these $U_{3}^{o p t}$):
- $U_{3}^{\text {opt }}=R_{3}^{\text {opt }}+C_{3,2}=813.895+(4500+1500)=\$ 6,813.90$

Hürlimann

Solution to part f:

\diamond Calculate the relative MSE's for each method (i.e. divide each method's MSE by the optimal MSE):

i	Collective	Individual	Neuhaus	Benktander	Optimal
3	1.056	1.064	1.024	1.038	1.000

\diamond Here are the underlying calculations:

- Collective $=\frac{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0^{2}}{0.884}+\frac{1}{0.116}+\frac{(1-0)^{2}}{0.940}\right] \cdot 0.116^{2}}{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.485^{2}}{0.844}+\frac{1}{0.116}+\frac{(1-0.455)^{2}}{0.940}\right] \cdot 0.116^{2}}=1.056$
- Individual $=\frac{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{1^{2}}{0.884}+\frac{1}{0.116}+\frac{(1-1)^{2}}{0.940}\right] \cdot 0.116^{2}}{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.45)^{2}}{0.884}+\frac{1}{0.116}+\frac{(1-0.45)^{2}}{0.940}\right] \cdot 0.116^{2}}=1.064$
- Neuhaus $=\frac{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.799^{2}}{0.084}+\frac{1}{0.116}+\frac{(1-0.799)^{2}}{0.940}\right] \cdot 0.116^{2}}{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.485^{2}}{0.884}+\frac{1}{0.116}+\frac{(1-0.485)^{2}}{0.940}\right] \cdot 0.116^{2}}=1.024$
- Benktander $=\frac{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.888^{2}}{0.844}+\frac{1}{0.116}+\frac{(1-0.884)^{2}}{0.940}\right] \cdot 0.116^{2}}{E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{0.4852}{0.884}+\frac{1}{0.116}+\frac{(1-0.485)^{2}}{0.940}\right] \cdot 0.116^{2}}=1.038$
\diamond Using the relative MSE table, it's clear that the Neuhaus reserve best matches the optimal credible reserve

MP \#3

Given the following for a 4×4 triangle:

$$
\begin{aligned}
& \diamond U_{4}^{(0)}=\$ 5,000 \\
& \diamond C_{4,1}=\$ 1,200 \\
& \diamond q_{4}=0.80
\end{aligned}
$$

Calculate $U_{4}^{(3)}$.

Hürlimann

Solution:

$\diamond R_{4}^{(0)}=q_{4} \cdot U_{4}^{(0)}=0.8(5000)=4000$
$\diamond U_{4}^{(1)}=C_{4,1}+R_{4}^{(0)}=1200+4000=5200$
$\diamond R_{4}^{(1)}=q_{4} \cdot U_{4}^{(1)}=0.8(5200)=4160$
$\diamond U_{4}^{(2)}=C_{4,1}+R_{4}^{(1)}=1200+4160=5360$
$\diamond R_{4}^{(2)}=q_{4} \cdot U_{4}^{(2)}=0.8(5360)=4288$
$\diamond U_{4}^{(3)}=C_{4,1}+R_{4}^{(2)}=1200+4288=\$ 5,488$

Hürlimann

MP \#4

Given the following:
$\diamond f_{2}=1.3$
$\diamond p_{2}=0.9$
$\diamond R_{2}^{\text {ind }}=\$ 5,000$
$\diamond R_{2}^{\text {coll }}=\$ 4,500$

Using credibility weights that minimize the variance of the optimal credibility claims reserve, estimate R_{2}^{c}.

Hürlimann

Solution:

\diamond Calculate t_{2}^{*} :

- $t_{2}^{*}=\frac{f_{2}-1+\sqrt{\left(f_{2}+1\right) \cdot\left(f_{2}-1+2 p_{2}\right)}}{2}=\frac{1.3-1+\sqrt{(1.3+1) \cdot(1.3-1+2(0.9))}}{2}=1.249$
\diamond Calculate Z_{2}^{*} :
- $Z_{2}^{*}=\frac{p_{2}}{p_{2}+t_{2}^{*}}=\frac{0.9}{0.9+1.249}=0.419$
\diamond Calculate R_{2}^{c} :
- $R_{2}^{c}=R_{2}^{\text {ind }} \cdot Z_{2}^{*}+R_{2}^{\text {coll }} \cdot\left(1-Z_{2}^{*}\right)=5000(0.419)+(1-0.419)(4500)=\$ 4,709.50$

Hürlimann

MP \#5

Given the following:
$\diamond f_{2}=1$
$\diamond t_{2}^{*}=0.95$
\diamond Individual loss ratio claims reserve $=\$ 5,000$
\diamond Minimum variance claims reserve $=\$ 4,800$

Calculate the collective loss ratio claims reserve for origin period 2.

Hürlimann

Solution:

\diamond Calculate Z_{2}^{*} :

- Since $f_{2}=1, t_{2}^{*}=0.95=\sqrt{p_{2}}$. Thus, $p_{2}=0.903$
- $Z_{2}^{*}=\frac{p_{2}}{p_{2}+t_{2}^{*}}=\frac{0.903}{0.903+0.95}=0.487$
\diamond Calculate $R_{2}^{\text {coll }}$:
- $R_{2}^{c}=R_{2}^{\text {ind }} \cdot Z_{2}^{*}+R_{2}^{\text {coll }} \cdot\left(1-Z_{2}^{*}\right)$
- $4800=5000(0.487)+(1-0.487) \cdot R_{2}^{\text {coll }}$
- Thus, $R_{2}^{\text {coll }}=\$ 4,610.14$

Hürlimann

MP \#6

Given the following:

		Cumulative Reported Losses (\$)		
AY	Earned Premium $(\$)$	12 mo.	24 mo.	36 mo.
2010	200	40	80	100
2011	225	60	120	
2012	250	65		

a) Estimate the AY 2012 reserves using the optimal Cape Cod method.
b) Estimate the AY 2012 reserves using the optimal Bornhuetter/Ferguson method given an initial loss ratio of 0.55 .

Hürlimann

Solution to part a:

\diamond Calculate the age-to-age factors:

- $f_{1}^{C L}=\frac{80+120}{40+60}=2$
- $f_{2}^{C L}=\frac{100}{80}=1.25$
\diamond Calculate the $p_{i}^{C L}$, s:
- $p_{1}^{C L}=1$
- $p_{2}^{C L}=\frac{1}{1.25}=0.80$
- $p_{3}^{C L}=\frac{1}{2(1.25)}=0.40$
\diamond Calculate $R_{3}^{\text {ind }}$
- $R_{3}^{\text {ind }}=\frac{q_{3}^{G L}}{p_{3}^{C L}} \cdot C_{3,1}=\frac{1-0.40}{0.40} \cdot 65=97.5$
\diamond Calculate $R_{3}^{\text {coll }}$:
- $R_{3}^{\text {coll }}=V_{3} \cdot L R \cdot q_{3}$
- $L R=\frac{\sum_{i=1}^{n} C_{i, n-i+1}}{\sum_{i=1}^{n} p_{i}^{C L} \cdot V_{i}}=\frac{100+120+65}{200(1)+225(0.80)+250(0.40)}=0.594$
- Thus, $R_{3}^{\text {coll }}=250(0.594)(1-0.40)=89.1$
\diamond Calculate Z_{3}^{*} :
- $Z_{3}^{*}=\frac{p_{3}^{C L}}{p_{3}^{C L}+\sqrt{p_{3}^{C L}}}=\frac{0.40}{0.40+\sqrt{0.40}}=0.387$
\diamond Calculate R_{3}^{c} :
- $R_{3}^{c}=97.5(0.387)+(1-0.387)(89.1)=\$ 92.35$

Solution to part b:

\diamond Calculate $R_{3}^{\text {coll }}:$

- $R_{3}^{\text {coll }}=V_{3} \cdot L R_{3} \cdot q_{3}=250(0.55)(1-0.40)=82.5$
\diamond Calculate R_{3}^{c} :
- $R_{3}^{c}=97.5(0.387)+(1-0.387)(82.5)=\$ 88.31$

Hürlimann

Original Essay Problems

EP \#1
a) Briefly describe three differences between Hürlimann's method and the Benktander method.
b) Briefly describe one similarity between Hürlimann's method and the Benktander method.

EP \#2

Provide one advantage of the collective loss ratio reserve over the standard Bornhuetter/Ferguson reserve.

EP \#3

Explain why $t_{i}^{*}=\sqrt{p_{i}}$ is an appealing choice when calculating the optimal credibility weights.

Hürlimann

Original Essay Solutions

ES \#1

Part a:
\diamond Hürlimann's method is based on a full development triangle, whereas the Benktander method is based on a single accident year
\diamond Hürlimann's method requires a measure of exposure for each accident year (i.e. premiums)
\diamond Hürlimann's method relies on loss ratios (rather than link ratios) to determine reserves
Part b:
\diamond Similar to the Benktander method, Hürlimann's method represents a credibility weighting between two extreme positions: relies on cumulative paid claims (i.e. individual loss reserves) vs. ignores cumulative paid claims (i.e. collective loss reserves)

ES \#2

\diamond With the collective loss ratio reserve, different actuaries always come to the same results provided they use the same premiums

ES \#3

\diamond This assumption yields the smallest credibility weights for the individual loss reserves, which places more emphasis on the collective loss reserves (as mentioned in the outline, this does not appear to be correct. As f increases from $f=1$, less weight is placed on the individual loss reserves. That being said, I think there's a possibility this could be asked on the exam. If so, stick with what the author says)

Hürlimann

Past CAS Exam Problems \& Solutions

2019 \#2
Given the following information as of December 31, 2018:

		$\begin{array}{c}\text { Inc. Paid Loss (\$000) } \\ \\ \end{array}$		
AY of (months)				

\diamond Assume there is no further development after 36 months
$\diamond \operatorname{Var}\left(U_{i}\right)=\operatorname{Var}\left(U_{i}^{B C}\right)$
a) Calculate the accident year 2018 Benktander reserve estimate $\left(R^{G B}\right)$.
b) Calculate the accident year 2018 optimal credible reserve estimate $\left(R_{c}\right)$.
c) Identify which of R_{c} or $R^{G B}$ is the preferable reserve from a statistical point of view and briefly describe a supporting reason.
d) Describe the effect on the Benktander credibility for accident year 2018 if the incremental paid loss from 12 to 24 months for accident year 2017 was greater than the value in the table above.

Hürlimann

Solution to part a:

\diamond Calculate the m_{k} 's:

- $m_{k}=\frac{E\left[\sum_{i=1}^{n-k+1} S_{i k}\right]}{\sum_{i=1}^{n-k+1} V_{i}}$
- $m_{1}=0.316=\frac{1800+2000+2200}{5000+6000+8000}$
- $m_{2}=0.136$
- $m_{3}=0.100$
\diamond Calculate $E\left[U_{3}^{B C}\right]$:
- $E\left[U_{i}^{B C}\right]=V_{i} \cdot \sum_{k=1}^{n} m_{k}$
- $E\left[U_{3}^{B C}\right]=8000(0.316+0.136+0.100)=4416$
\diamond Calculate p_{3} and q_{3} :
- $p_{i}=\frac{\sum_{k=1}^{n-i+1} m_{k}}{\sum_{k=1}^{n} m_{k}}$
- $p_{3}=\frac{0.316}{0.316+0.136+0.100}=0.572$ and $q_{3}=1-p_{3}=0.428$
\diamond Calculate $R_{3}^{\text {ind }}$:
- $R_{i}^{i n d}=\frac{q_{i}}{p_{i}} \cdot C_{i, n-i+1}$ and $U_{i}^{\text {ind }}=R_{i}^{\text {ind }}+C_{i, n-i+1}$
- $R_{3}^{\text {ind }}=\frac{0.428}{0.572} \cdot 2200=1646.154$
\diamond Calculate $R_{3}^{\text {coll }}$:
- $R_{i}^{\text {coll }}=q_{i} \cdot U_{i}^{B C}$ and $U_{i}^{\text {coll }}=R_{i}^{\text {coll }}+C_{i, n-i+1}$
- $R_{3}^{\text {coll }}=0.428(4416)=1890.048$
\diamond Calculate $R_{3}^{G B}$:
- $R_{i}^{G B}=Z_{i}^{G B} \cdot R_{i}^{\text {ind }}+\left(1-Z_{i}^{G B}\right) \cdot R_{i}^{\text {coll }}$, where $Z_{i}^{G B}=p_{i}$
- $R_{3}^{G B}=p_{3} \cdot R_{3}^{\text {ind }}+\left(1-p_{3}\right) \cdot R_{3}^{\text {coll }}=0.572(1646.154)+(1-0.572)(1890.048)=\$ 1,750,541$

Solution to part b:

\diamond Since $\operatorname{Var}\left(U_{i}\right)=\operatorname{Var}\left(U_{i}^{B C}\right), Z_{3}^{c}=\frac{p_{3}}{p_{3}+\sqrt{p_{3}}}=\frac{0.572}{0.572+\sqrt{0.572}}=0.431$
$\diamond R_{3}^{c}=Z_{3}^{c} \cdot R_{3}^{\text {ind }}+\left(1-Z_{3}^{c}\right) \cdot R_{3}^{\text {coll }}=0.431(1646.154)+(1-0.431)(1890.048)=\$ 1,784,930$

Hürlimann

Solution to part c:

$\diamond R_{c}$ is preferable because it minimizes the MSE of the reserve
Solution to part d:
\diamond In this case, m_{2} would increase, while m_{1} and m_{3} would remain the same. Thus, $p_{3}=$ $\frac{m_{1}}{m_{1}+m_{2}+m_{3}}$ would decrease since the denominator increases while the numerator stays the same. Since $Z_{3}^{G B}=p_{3}$, the credibility decreases

Hürlimann

2019 \#3

Given the following information as of December 31, 2018:

		Inc. Paid Loss (\$000) as of (months)		
		Earned Premium $(\$ 000)$	12	24
AY	Eary			
2016	800	320	220	80
2017	600	300	200	
2018	400	280		

\diamond Assume there is no loss development beyond 36 months
a) Calculate the total Neuhaus loss ratio claims reserve estimate.
b) Describe why the Neuhaus method may not be appropriate for the data in the table above.

Hürlimann

Solution to part a:

\diamond Calculate the m_{k} 's:

- $m_{k}=\frac{E\left[\sum_{i=1}^{n-k+1} S_{i k}\right]}{\sum_{i=1}^{n-k+1} V_{i}}$
- $m_{1}=0.500=\frac{320+300+280}{800+600+400}$
- $m_{2}=0.300$
- $m_{3}=0.100$
\diamond Calculate $E\left[U_{i}^{B C}\right]$:
- $E\left[U_{i}^{B C}\right]=V_{i} \cdot \sum_{k=1}^{n} m_{k}$
- $E\left[U_{1}^{B C}\right]=800(0.500+0.300+0.100)=720$
- $E\left[U_{2}^{B C}\right]=600(0.500+0.300+0.100)=540$
- $E\left[U_{3}^{B C}\right]=400(0.500+0.300+0.100)=360$
\diamond Calculate p_{i} and q_{i} :
- $p_{i}=\frac{\sum_{k=1}^{n-i+1} m_{k}}{\sum_{k=1}^{n} m_{k}}$
- $p_{1}=\frac{0.500+0.300+0.100}{0.500+0.300+0.100}=1.000$ and $q_{1}=1-p_{1}=0.000$
- $p_{2}=\frac{0.500+0.300}{0.500+0.300+0.100}=0.889$ and $q_{2}=1-p_{2}=0.111$
- $p_{3}=\frac{0.500}{0.500+0.300+0.100}=0.556$ and $q_{3}=1-p_{3}=0.444$
\diamond Calculate $R_{i}^{\text {ind }}$:
- $R_{i}^{i n d}=\frac{q_{i}}{p_{i}} \cdot C_{i, n-i+1}$ and $U_{i}^{\text {ind }}=R_{i}^{\text {ind }}+C_{i, n-i+1}$
- $R_{1}^{\text {ind }}=\frac{0}{1} \cdot(320+220+80)=0$
- $R_{2}^{\text {ind }}=\frac{0.111}{0.889} \cdot(300+200)=62.430$
- $R_{3}^{\text {ind }}=\frac{0.444}{0.556} \cdot 280=223.597$
\diamond Calculate $R_{i}^{\text {coll }}$:
- $R_{i}^{\text {coll }}=q_{i} \cdot U_{i}^{B C}$ and $U_{i}^{\text {coll }}=R_{i}^{\text {coll }}+C_{i, n-i+1}$
- $R_{1}^{\text {coll }}=0(720)=0$
- $R_{2}^{\text {coll }}=0.111(540)=59.94$

Hürlimann

- $R_{3}^{\text {coll }}=0.444(360)=159.84$
\diamond Calculate $R_{3}^{G B}$:
- $R_{i}^{W N}=Z_{i}^{W N} \cdot R_{i}^{\text {ind }}+\left(1-Z_{i}^{W N}\right) \cdot R_{i}^{\text {coll }}$, where $Z_{i}^{W N}=\sum_{k=1}^{n-i+1} m_{k}$
- $R_{1}^{W N}=0$ since $R_{1}^{\text {ind }}=R_{1}^{\text {coll }}=0$
- $R_{2}^{W N}=(0.500+0.300)(62.430)+(1-0.500-0.300)(59.94)=61.932$
- $R_{3}^{W N}=(0.500)(223.597)+(1-0.500)(159.84)=191.719$
\diamond The total Neuhaus loss ratio claims reserves is $61.932+191.719=\$ 253,651$

Solution to part b:

\diamond The premium volume is shrinking over time. This may indicate a change in mix of business. Since the Neuhaus method assumes a constant ELR for all accident years, a change in mix of business may violate the constant ELR assumption

Hürlimann

2018 \#3

Given the following information as of December 31, 2017:

		Cumulative Paid Loss (\$000)			
		as of (months)			
AY	Earned Premium $(\$ 000)$	12	24	36	48
2014	8,000	2,500	3,335	3,942	4,021
2015	8,320	2,100	2,705	3,335	
2016	8,650	3,000	4,113		
2017	9,000	3,500			

\diamond Assume there is no further development after 48 months
$\diamond t_{i}=\sqrt{p_{i}}$
$\diamond E\left[\alpha_{2}^{2}\left(U_{2}\right)\right]=2,000$
Calculate the mean squared error for both the individual loss ratio method and the collective loss ratio method, and determine which is preferable for estimating R_{2015}.
\diamond Create the triangle of incremental losses:
Incremental Paid Loss (\$000)

		as of (months)			
AY	Earned Premium $(\$ 000)$	12	24	36	48
2014	8,000	2,500	835	607	79
2015	8,320	2,100	605	630	
2016	8,650	3,000	1,113		
2017	9,000	3,500			

\diamond Calculate the m_{k} 's:

- $m_{k}=\frac{E\left[\sum_{i=1}^{n-k+1} S_{i k}\right]}{\sum_{i=1}^{n-k+1} V_{i}}$
- $m_{1}=0.327=\frac{2500+2100+3000+3500}{8000+8320+8650+9000}$
- $m_{2}=0.102$
- $m_{3}=0.076$
- $m_{4}=0.010$
\diamond Calculate p_{2015} and q_{2015} :
- $p_{i}=\frac{\sum_{k=1}^{n-i+1} m_{k}}{\sum_{k=1}^{n} m_{k}}$
- $p_{2015}=\frac{0.327+0.102+0.076}{0.327+0.102+0.076+0.010}=0.981$
- Thus, $q_{2015}=1-0.981=0.019$
\diamond The MSE for any credible reserve is $\operatorname{mse}\left(R_{i}^{c}\right)=E\left[\alpha_{i}^{2}\left(U_{i}\right)\right] \cdot\left[\frac{Z_{i}^{2}}{p_{i}}+\frac{1}{q_{i}}+\frac{\left(1-Z_{i}\right)^{2}}{t_{i}}\right] \cdot q_{i}^{2}$
\diamond Thus, the MSE for the individual loss ratio method $(\mathrm{Z}=1)$ is $\operatorname{mse}\left(R_{i}^{c}\right)=2000 \cdot\left[\frac{1^{2}}{0.981}+\frac{1}{0.019}+\frac{(1-1)^{2}}{\sqrt{0.981}}\right]$. $0.019^{2}=38.736$
\diamond Thus, the MSE for the collective loss ratio method $(\mathrm{Z}=0)$ is $\operatorname{mse}\left(R_{i}^{c}\right)=2000 \cdot\left[\frac{0^{2}}{0.981}+\frac{1}{0.019}+\frac{(1-0)^{2}}{\sqrt{0.981}}\right]$. $0.019^{2}=38.729$
\diamond Since the MSE for the collective method is slightly smaller, it is the preferred method

Hürlimann

2017 \#1

Given the following information as of December 31, 2016:

		Cumulative Reported Loss (\$)		
Accident	Earned	12	24	36
Year	Premium	Months	Months	Months
2014	$1,100,000$	450,000	585,000	614,250
2015	$1,210,000$	600,000	840,000	
2016	$1,331,000$	850,000		

\diamond Assume no further development after 36 months

Calculate the ultimate losses for each accident year using each of the following methods:
\diamond Collective loss ratio
\diamond Individual loss ratio
\diamond Benktander loss ratio
\diamond Optimal credible loss ratio

Hürlimann

Solution:

\diamond To use Hürlimann's method, we need to calculate incremental losses:

	Incremental Loss		
Accident	12	24	36
Year	Months	Months	Months
2014	450,000	135,000	29,250
2015	600,000	240,000	
2016	850,000		

\diamond Calculate the m_{k} 's:

- $m_{k}=\frac{E\left[\sum_{i=1}^{n-k+1} S_{i k}\right]}{\sum_{i=1}^{n-k+1} V_{i}}$
- $m_{1}=0.522=\frac{450+600+850}{1100+1210+1331}$
- $m_{2}=0.162$
- $m_{3}=0.027$
\diamond Calculate $E\left[U_{i}^{B C}\right]$:
- $E\left[U_{i}^{B C}\right]=V_{i} \cdot \sum_{k=1}^{n} m_{k}$
- $E\left[U_{1}^{B C}\right]=1100000(0.522+0.162+0.027)=782100$
- $E\left[U_{2}^{B C}\right]=1210000(0.522+0.162+0.027)=860310$
- $E\left[U_{3}^{B C}\right]=1331000(0.522+0.162+0.027)=946341$
\diamond Calculate the p_{i} 's and q_{i} 's:
- $p_{i}=\frac{\sum_{k=1}^{n-i+1} m_{k}}{\sum_{k=1}^{n} m_{k}}$
- $p_{1}=\frac{0.522+0.162+0.027}{0.522+0.162+0.027}=1.000$ and $q_{1}=1-p_{1}=0.000$
- $p_{2}=\frac{0.522+0.162}{0.522+0.162+0.027}=0.962$ and $q_{2}=1-p_{2}=0.038$
- $p_{3}=\frac{0.522}{0.522+0.162+0.027}=0.734$ and $q_{3}=1-p_{3}=0.266$
\diamond Calculate the $U_{i}^{i n d}{ }^{\text {' }}$ s:
- $R_{i}^{\text {ind }}=\frac{q_{i}}{p_{i}} \cdot C_{i, n-i+1}$ and $U_{i}^{\text {ind }}=R_{i}^{\text {ind }}+C_{i, n-i+1}$
- $R_{1}^{\text {ind }}=\frac{0}{1} \cdot 614250=0$. Thus, $U_{1}^{\text {ind }}=0+614250=\$ 614,250$
- $R_{2}^{\text {ind }}=\frac{0.038}{0.962} \cdot 840000=33180.873$. Thus, $U_{2}^{\text {ind }}=33180.873+840000=\$ 873,180.87$
- $R_{3}^{\text {ind }}=\frac{0.266}{0.734} \cdot 850000=308038.147$. Thus, $U_{3}^{\text {ind }}=308038.147+850000=\$ 1,158,038.15$ \diamond Calculate the $U_{i}^{\text {coll }}$'s:
- $R_{i}^{\text {coll }}=q_{i} \cdot U_{i}^{B C}$ and $U_{i}^{\text {coll }}=R_{i}^{\text {coll }}+C_{i, n-i+1}$
- $R_{1}^{\text {coll }}=0(782100)=0$. Thus, $U_{1}^{\text {coll }}=0+614250=\$ 614,250$
- $R_{2}^{\text {coll }}=0.038(860310)=32691.780$. Thus, $U_{2}^{\text {coll }}=32691.780+840000=\$ 872,691.78$
- $R_{3}^{\text {coll }}=0.266(946341)=251726.706$. Thus, $U_{3}^{\text {coll }}=251726.706+850000=\$ 1,101,726.71$ \diamond Calculate the $U_{i}^{G B}$,s:
- $U_{i}^{G B}=Z_{i}^{G B} \cdot U_{i}^{i n d}+\left(1-Z_{i}^{G B}\right) \cdot U_{i}^{\text {coll }}$, where $Z_{i}^{G B}=p_{i}$
- $U_{1}^{G B}=p_{1} \cdot U_{1}^{\text {ind }}+\left(1-p_{1}\right) \cdot U_{1}^{\text {coll }}=1.000(614250)+(1-1)(614250)=\$ 614,250$
- $U_{2}^{G B}=p_{2} \cdot U_{2}^{\text {ind }}+\left(1-p_{2}\right) \cdot U_{2}^{\text {coll }}=0.962(873180.87)+(1-0.962)(872691.78)=$ $\$ 873,162.28$
- $U_{3}^{G B}=p_{3} \cdot U_{3}^{\text {ind }}+\left(1-p_{3}\right) \cdot U_{3}^{\text {coll }}=0.734(1158038.15)+(1-0.734)(1101726.71)=$ $\$ 1,143,059.31$
\diamond Calculate the $U_{i}^{o p t}$, s:
- $U_{i}^{\text {opt }}=Z_{i}^{*} \cdot U_{i}^{\text {ind }}+\left(1-Z_{i}^{*}\right) \cdot U_{i}^{\text {coll }}$, where $Z_{i}^{*}=\frac{p_{i}}{p_{i}+\sqrt{p_{i}}}$
- $U_{1}^{\text {opt }}=\left(\frac{1}{1+\sqrt{1}}\right) \cdot U_{1}^{\text {ind }}+\left(1-\frac{1}{1+\sqrt{1}}\right) \cdot U_{1}^{\text {coll }}=0.5(614250)+(1-0.5)(614250)=\$ 614,250$
- $U_{2}^{\text {opt }}=\left(\frac{0.962}{0.962+\sqrt{0.962}}\right) \cdot U_{2}^{\text {ind }}+\left(1-\frac{0.962}{0.962+\sqrt{0.962}}\right) \cdot U_{2}^{\text {coll }}=0.495(873180.87)+(1-$ $0.495)(872691.78)=\$ 872,933.88$
- $U_{3}^{\text {opt }}=\left(\frac{0.734}{0.734+\sqrt{0.734}}\right) \cdot U_{3}^{\text {ind }}+\left(1-\frac{0.734}{0.734+\sqrt{0.734}}\right) \cdot U_{3}^{\text {coll }}=0.461(1158038.15)+(1-$ $0.461)(1101726.71)=\$ 1,127,686.28$

Hürlimann

2016 \#1

Given the following information:

	Cumulative Loss		
Accident	12	24	36
Year	Months	Months	Months
2013	1,500	2,700	3,450
2014	1,600	2,740	
2015	1,700		

\diamond Exposures and premium are constant across all accident years
\diamond There is no development beyond 36 months
a) Calculate the total reserve indication as of December 31, 2015 using loss-ratio based payout factors and the Benktander method.
b) Calculate the fifth-iteration Benktander reserve indication for accident year 2015 .
c) Assuming $\operatorname{Var}\left(U_{i}\right)=\operatorname{Var}\left(U_{i}^{B C}\right)$, use Hürlimann's method for optimal credibility and minimum variance to calculate the reserve indication for accident year 2015.

Hürlimann

Solution to part a:

\diamond To use Hürlimann's method, we need to calculate incremental losses:

Accident	Incremental Loss Payments (\$)		
	12	24	36
Year	Months	Months	Months
2013	1,500	1,200	750
2014	1,600	1,140	
2015	1,700		

\diamond Calculate the m_{k} 's (since we are not given a premium, I assumed it was 5000):

- $m_{k}=\frac{E\left[\sum_{i=1}^{n-k+1} S_{i k}\right]}{\sum_{i=1}^{n-k+1} V_{i}}$
- $m_{1}=0.320=\frac{1500+1600+1700}{5000+5000+5000}$
- $m_{2}=0.234$
- $m_{3}=0.150$
\diamond Calculate $E\left[U_{i}^{B C}\right]$:
- $E\left[U_{i}^{B C}\right]=V_{i} \cdot \sum_{k=1}^{n} m_{k}$
- $E\left[U_{1}^{B C}\right]=E\left[U_{2}^{B C}\right]=E\left[U_{3}^{B C}\right]=5000(0.320+0.234+0.150)=3520$
\diamond Calculate the p_{i} 's and $q_{i}{ }^{\prime}$ s:
- $p_{i}=\frac{\sum_{k=1}^{n-i+1} m_{k}}{\sum_{k=1}^{n} m_{k}}$
- $p_{1}=\frac{0.320+0.234+0.150}{0.320+0.234+0.150}=1.000$ and $q_{1}=1-p_{1}=0.000$
- $p_{2}=\frac{0.320+0.234}{0.320+0.234+0.150}=0.787$ and $q_{2}=1-p_{2}=0.213$
- $p_{3}=\frac{0.320}{0.320+0.234+0.150}=0.455$ and $q_{3}=1-p_{3}=0.545$
\diamond Calculate the $R_{i}^{\text {ind }}{ }^{\prime}$ s:
- $R_{i}^{i n d}=\frac{q_{i}}{p_{i}} \cdot C_{i, n-i+1}$
- $R_{1}^{\text {ind }}=\frac{0}{1} \cdot 3450=0$
- $R_{2}^{\text {ind }}=\frac{0.213}{0.787} \cdot 2740=741.576$
- $R_{3}^{\text {ind }}=\frac{0.545}{0.455} \cdot 1700=2036.264$

Hürlimann

\diamond Calculate the $R_{i}^{\text {coll }}$, s:

- $R_{i}^{\text {coll }}=q_{i} \cdot U_{i}^{B C}$
- $R_{1}^{\text {coll }}=0(3520)=0$
- $R_{2}^{\text {coll }}=0.213(3520)=749.760$
- $R_{3}^{\text {coll }}=0.545(3520)=1918.400$
\diamond Calculate the $R_{i}^{G B}$'s:
- $R_{i}^{G B}=Z_{i}^{G B} \cdot R_{i}^{i n d}+\left(1-Z_{i}^{G B}\right) \cdot R_{i}^{\text {coll }}$, where $Z_{i}^{G B}=p_{i}$
- $R_{1}^{G B}=p_{1} \cdot R_{1}^{\text {ind }}+\left(1-p_{1}\right) \cdot R_{1}^{\text {coll }}=1.000(0)+(1-1)(0)=0$
- $R_{2}^{G B}=p_{2} \cdot R_{2}^{\text {ind }}+\left(1-p_{2}\right) \cdot R_{2}^{\text {coll }}=0.787(741.576)+(1-0.787)(749.760)=743.319$
- $R_{3}^{G B}=p_{3} \cdot R_{3}^{\text {ind }}+\left(1-p_{3}\right) \cdot R_{3}^{\text {coll }}=0.455(2036.264)+(1-0.455)(1918.400)=1972.028$
- Total reserve $=0+743.319+1972.028=\$ 2,715.35$

Solution to part b:

\diamond The Benktander reserve is the second iteration of Hürlimann's method
\diamond To calculate the third iteration reserve for AY 2015, we apply q_{3} to the Benktander AY 2015 ultimate loss. Thus, the third iteration is reserve is $0.545(1700+1972.028)=2001.255$
\diamond To calculate the fourth iteration reserve for AY 2015, we apply q_{3} to the third iteration AY 2015 ultimate loss. Thus, the fourth iteration reserve is $0.545(1700+2001.255)=2017.184$
\diamond To calculate the fifth iteration reserve for AY 2015, we apply q_{3} to the fourth iteration AY 2015 ultimate loss. Thus, the fifth iteration reserve is $0.545(1700+2017.184)=\$ 2,025.87$

Solution to part c:

\diamond Calculate Z_{i}^{*} :

- $Z_{i}^{*}=\frac{p_{i}}{p_{i}+t_{i}}$
- $Z_{3}^{*}=\frac{p_{3}}{p_{3}+t_{3}}=\frac{0.455}{0.455+\sqrt{0.455}}=0.403$
\diamond Calculate the optimal reserves (call these $R_{3}^{o p t}$):
- $R_{i}^{\text {opt }}=Z_{i}^{*} \cdot R_{i}^{\text {ind }}+\left(1-Z_{i}^{*}\right) \cdot R_{i}^{\text {coll }}$
- $R_{3}^{\text {opt }}=Z_{3}^{*} \cdot R_{3}^{\text {ind }}+\left(1-Z_{3}^{*}\right) \cdot R_{3}^{\text {coll }}=0.403(2036.264)+(1-0.403)(1918.400)=\$ 1,965.90$

