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Bahnemann Ch. 5 – Excess Claims 
Outline 

Chapter 5 focuses on claims excess of some fixed positive amount. We will be introducing a 

number of formulas and notation in this chapter. Fortunately, much of this has already been 

covered in some degree on earlier exams.  

I. Excess Claim Size 

Let 𝑋 and 𝑎 be an unlimited claim-size random variable and non-negative constant, respectively. 

Then, the random variable 𝑌 defined by 

𝑌 = %0, 0 ≤ 𝑋 ≤ 𝑎
𝑋 − 𝑎, 𝑋 > 𝑎  

represents size of claims modified by a limit amount 𝑎. 

The distribution function of 𝑌 is obtained from the distribution function of 𝑋 as follows: 

𝐹!(𝑦) = 𝑃𝑟(𝑌 ≤ 𝑦) = 1
0, 𝑦 < 0
𝐹"(𝑦 + 𝑎), 𝑦	 ≥ 	0 

Assuming 𝐸[𝑋] exists, it can be shown that 𝐸[𝑌] equals the following: 

𝐸[𝑌] = 𝐸[𝑋] − 𝐸[𝑋; 𝑎] 

where 𝐸[𝑋; 𝑎] = 𝐸[𝑚𝑖𝑛(𝑋, 𝑎)] is the limited expected value of 𝑋 at a limit amount 𝑎. 

Now, based on the definition of 𝑌, the insurer pays nothing if 𝑋	 ≤ 𝑎. Thus, insurers tend to 

focus on 𝑿𝒂, defined only for 𝑋 > 𝑎: 

𝑋$ = 𝑋 − 𝑎 
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𝑋$ represents the excess of 𝑿 over the limit 𝒂. We can think of 𝑋$ as the variable 𝑋 truncated 

from below and shifted by 𝒂. 

The distribution function of 𝑋$ is obtained from the distribution function of 𝑋 as follows: 

𝐹"!(𝑥) = 𝑃𝑟(𝑋 − 𝑎 ≤ 𝑥|𝑋 > 𝑎) = A
0, 𝑥 < 0
"#(%&!)("#(!)

)("#(!)
, 𝑥	 ≥ 	0 

Assuming	𝐸[𝑋] exists, it can be shown that 𝐸[𝑋$] equals the following: 

𝐸[𝑋$] =
𝐸[𝑋] − 𝐸[𝑋; 𝑎]
1 − 𝐹"(𝑎)

 

We will revisit 𝐸[𝑋$] in the next section. 

We can calculate the limited expected value of 𝑿𝒂 at a limit amount 𝒍 as follows: 

𝐸[𝑋$; 𝑙] =
𝐸[𝑋; 𝑎 + 𝑙] − 𝐸[𝑋; 𝑎]

1 − 𝐹"(𝑎)
 

Next, Bahnemann introduces two familiar claim-size distributions for 𝑋: 

1) Exponential distribution 

2) Pareto distribution 

Exponential Distribution 

We can summarize the key formulas for the exponential distribution with parameter β as follows 

(assume 𝑥 ≥ 0): 

• 𝐹"(𝑥) = 1 − 𝑒
(%
*  

• 𝐸[𝑋] = β 

• 𝑉𝑎𝑟(𝑋) = β& 
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• 𝐸[𝑋; 𝑥] = β H1 − 𝑒
(%
+ I 

• 𝐸[𝑋'] = 𝐸[𝑋] = β 

Pareto Distribution 

We can summarize the key formulas for the pareto distribution with parameters α and β as 

follows (assume 𝑥 > 0): 

• 𝐹"(𝑥) = 1 − K (
)*(

L
+

 

• 𝐸[𝑋] = (
,-.

 

• 𝑉𝑎𝑟(𝑋) = ,(,

(,-.),(,-&)
 

• 𝐸[𝑋; 𝑥] = (
,-.

M1 − K (
1*(

L
,-.

N 

• 𝐸[𝑋'] =
'*(
,-.

 

The last thing Bahnemann covers in this section is how to use the chi-squared statistic to fit a 

distribution. 

______________________________________________________________________________ 

Example: Fitting a Lognormal Distribution 

Given the following grouped claim-size data from a sample of 300 claims from an unlimited 

population with an unknown distribution: 

Size Group # Claims 
0 – 5,000 139 

5,001 – 10,000 68 
10,001 – 15,000 32 
15,001 – 20,000 15 
20,001 – 25,000 11 
25,001 – 30,000 8 
30,001 – 35,000 5 



2024 CAS Exam 8  © 2024 Rising Fellow        242 
 

35,001 – 40,000 4 
40,001 – 45,000 3 
45,001 – 48,500 15 

Total 300 
 
Before the data above was tabulated, the claims were censored by a $50,000 policy limit and then 

subjected to a $1,500 straight deductible. Notice that the policy limit was applied first! Then, the 

deductible was applied to the capped claims. 

Our goal is to use the minimum chi-square approach to fit a lognormal distribution for the 

population of the unlimited (i.e., non-truncated and non-censored) claims.  

Let’s define a few things: 

• 𝐹(2,3)(𝑥) is the 𝑃𝑟(𝑋 ≤ 𝑥) for a lognormal distribution with parameters µ and σ 

• 𝑐4 = 5000𝑘 represents our size group boundaries, where 𝑘 = 0,1, … ,9 and 𝑐.5 = ∞ 

• 𝑛4 is the number of claims in each size group (ex. 𝑛.5 = 15) 

The probability 𝑃4(µ, σ) of a claim being less than or equal to 𝑐4 is as follows: 

𝑃4(µ, σ) = W
𝐹2,3(𝑐4 + 1,500) − 𝐹{2,3)(1,500)

1 − 𝐹2,3(1,500)
, 𝑘 = 0,1, . . . ,9

1, 𝑘 = 10
 

Notice that we must divide by the probability of being greater than or equal to 1,500 since the 

data is truncated from below by the $1,500 deductible. 

Once we define 𝑃4(𝜇, 𝜎), we can define the expected number of claims for each size group as 

follows: 

ϕ4(µ, σ) = (300)]𝑃4(µ, σ) − 𝑃4-.(µ, σ)^ 
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In the formula above, we multiply the total number of claims by the probability of being in a size 

group. This produces the expected number of claims in each size group. 

The chi-square statistic is defined as follows: 

χ&(µ, σ) = `
(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)&

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

.5

47.

 

=`
]𝑛4 − ϕ4(µ, σ)^

&

ϕ4(µ, σ)

.5

47.

 

The parameters (µ, σ) that minimize the chi-square statistic above are (µe, σf) =

(8.67593, 1.18109).  

Here is the calculation of the final chi-square statistic using the estimated parameters: 

Size Group # Claims (i.e., 
𝒏𝒌) 

𝑷𝒌(𝝁, 𝝈) 𝝓𝒌(𝝁, 𝝈) 
]𝒏𝒌 −𝝓𝒌(𝝁, 𝝈)^

𝟐

𝝓𝒌(𝝁, 𝝈)
 

0 – 5,000 139 0.4690 140.69 0.0202 
5,001 – 10,000 68 0.6756 62.00 0.5808 
10,001 – 15,000 32 0.7826 32.09 0.0003 
15,001 – 20,000 15 0.8452 18.79 0.7644 
20,001 – 25,000 11 0.8850 11.94 0.07377 
25,001 – 30,000 8 0.9118 8.04 0.0002 
30,001 – 35,000 5 0.9307 5.65 0.0755 
35,001 – 40,000 4 0.9444 4.11 0.0031 
40,001 – 45,000 3 0.9546 3.08 0.0019 
45,001 – 48,500 15 1.0000 13.61 0.1410 

Total 300  300 1.6610 
 

In the table above, the 𝑃4(𝜇, 𝜎) terms are found using the LOGNORM.DIST() function in 

Excel. For example: 

 𝑃.(µ, σ) =
:;<=;>?.ABCD(E,555*.E,555,F.GHEIJ,...F.5I)-:;<=;>?.ABCD(.E55,F.GHEIJ,...F.5I)

.-:;<=;>?.ABCD(.E55,F.GHEIJ,...F.5I)
= 0.4690 
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The ϕ4(µ, σ) terms are found using the formula above. For example, ϕ&(µ, σ) =

(300)(0.6756 − 0.4690) = 62.00. 

To actually solve for the estimated parameters (𝜇̂, 𝜎e) in Excel, we start with an initial parameter 

set and use a Solver Add-In to find the parameters that minimize the sum of the 	

K𝒏𝒌-𝝓𝒌(𝝁,𝝈)P
𝟐

𝝓𝒌(𝝁,𝝈)
 column. Now, on the exam, it’s unlikely that you would be asked to fit a two-

parameter distribution given that a Pearson VUE does not have a solver routine. But it’s still 

important to understand the example above conceptually. 

Before we move on, suppose we wanted to estimate the number of claims eliminated by the 

deductible. Since we estimated the parameters for the unlimited claim size distribution, we can 

estimate the number of claims eliminated by the deductible as follows: 

• # Population Claims ≤ 1,500 ≈ J55
.-QR("S.,E55)

𝑃𝑟(𝑋 ≤ 1,500) =

J55
.-:;<=;>?.ABCD(.E55,F.GHEIJ,...F.5I)

]𝐿𝑂𝐺𝑁𝑂𝑅𝑀.𝐷𝐼𝑆𝑇(1500,8.67593,1.18109)^ = 43 

claims 

The J55
.-QR("S.,E55)

 portion of the calculation is estimating the size of the sample before claims 

were eliminated by the deductible. Then, we multiply that number by 𝑃𝑟(𝑋 ≤ 1,500) to 

determine the number of claims eliminated by the deductible. 

______________________________________________________________________________ 

II. Excess Severity 

We defined 𝐸[𝑋$] mathematically in the previous section. 𝐸[𝑋$] is known as the mean excess 

claim size at 𝒂 or excess severity at 𝒂. If we replace the limit “𝑎” with the limit “𝑥,” we end up 

with 𝐸[𝑋1]. This is often denoted as 𝑒"(𝑥): 

𝑒"(𝑥) =
𝐸[𝑋] − 𝐸[𝑋; 𝑥]
1 − 𝐹"(𝑥)
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Then, we can graph 𝑒"(𝑥) for various parametric families and study their characteristics. Here is 

a plot of 𝑒"(𝑥) for a number of common distributions: 

 

 

 

 

 

 

We can summarize the excess severity function graphs as follows: 

• Exponential – 𝑒"(𝑥) is a constant function of 𝑥 

• Gamma – 𝑒"(𝑥) decreases toward a horizontal asymptote as 𝑥 → ∞ 

• Lognormal – 𝑒"(𝑥) increases without bound as 𝑥 → ∞ 

• Pareto – 𝑒"(𝑥) is an increasing linear function of 𝑥 (for α > 1) 

• Weibull – 𝑒"(𝑥) is increases with 𝑥 at a decreasing rate 

The plots above are useful when fitting distributions to empirical data: 

• If the empirical excess severity function is approximately linear with a positive slope, then 

this suggests a Pareto distribution should be used for the data 

• If the empirical excess severity function is nearly constant for large 𝒙, then this suggests 

either a gamma or exponential distribution should be used for the data 

• If the empirical excess severity lies in between the two extremes above, then this suggests 

either a lognormal or Weibull distribution should be used for the data 



2024 CAS Exam 8  © 2024 Rising Fellow        246 
 

One key thing to keep in mind is that using empirical excess severity plots to inform the 

distribution choice only works asymptotically (i.e., large values of 𝑥). Thus, it is imperative that 

the claim data contain enough large values of 𝑥 so that the empirical excess severity function can 

be reliably calculated. 

______________________________________________________________________________ 

Example: Fitting a Distribution Using Empirical Excess Severity Plots 

Given the following grouped sample claim data for 𝑛 = 1,000 claims: 

Size Group # Claims Total Loss Severity 
0 – 100 100 6,000 60 

101 – 500 300 95,000 317 
501 – 1,000 240 145,000 604 

1,001 – 2,000 185 260,000 1,405 
2,001 – 3,000 140 450,000 3,214 
4,001 – 5,000 15 66,000 4,400 
5,001 – 10,000 20 150,000 7,500 

Total 1,000 1,172,000 1,172 
 

Using the data above, let’s construct the empirical excess severity function and use it to select a 

distribution. 

First, let’s compute the empirical excess severity for each size group: 

Size 𝒙 𝑭𝒏(𝒙) 𝑬𝒏�𝑿�; 𝒙� 𝒆𝒏(𝒙) 
0 0 0 1,172 

100 0.100 96 1,196 
500 0.400 401 1,285 

1,000 0.640 606 1,572 
2,000 0.825 856 1,806 
4,000 0.965 1,096 2,171 
5,000 0.980 1,122 2,500 
10,000 1.000 1,172 - 
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Let’s discuss the table above: 

• The first column represents the endpoint of the size group. So, the “Size 500” row 

represents the size group 500 – 1,001 

• The 𝐹T(𝑥) column represents the empirical CDF.  For example, 𝐹.,555(500) =
.55*J55
.,555

= 0.400 

• The 𝐸.,555�𝑋�; 𝑥� represents the empirical limited expected value. For example, 

𝐸.,555�𝑋�; 500� =
G,555*IE,555*E55(.,555-.55-J55)

.,555
= 401. Notice that we cap all claims 

greater than 500 at 500 

• The 𝑒T(𝑥) represents the empirical excess severity function. For example, 𝑒.,555(500) =
U),000["W]-U),000["W;E55]

.-Z),000(E55)
= .,.H&-[5.

.-5.[55
= 1,285 

Second, let’s plot the empirical excess severity function and fit a trendline: 

 

 

 

 

 

 

 

As we can see from the 𝑅& value, the trendline fits the data well. Since the trendline is increasing 

as 𝑥 increases, it suggests that a Pareto distribution would be a good distribution to model the 

loss data. 
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Third, let’s fit a Pareto distribution to the data using the trendline: 

• The excess severity function of a Pareto distribution is 1*(
,-.

= .
,-.

𝑥 + (
,-.

 

• The expanded equation of the trendline above is 0.257335𝑥 + 1,208.50. Thus, .
,-.

=

0.257335, which means α = 4.88599. We also know that (
,-.

= (
[.FFEII-.

= 1,208.50. 

Thus, β = 4,696.22 

• The parameters of the fitted Pareto distribution are (α, β) = (4.88599, 4,696.22) 

Fourth, let’s compute the excess severity values using the Pareto distribution and compare them 

to the empirical excess severity values: 

Size 𝒙 𝒆𝒏(𝒙) 𝒆𝑿(𝒙) 
0 1,172 1,208 

100 1,196 1,234 
500 1,285 1,337 

1,000 1,572 1,466 
2,000 1,806 1,723 
4,000 2,171 2,238 
5,000 2,500 2,495 
10,000 - 3,782 

 

In the table above, the 𝑒"(𝑥) is calculated using the Pareto excess severity formula of "*(
,-.

=

1*[,GIG.&&
[.FFEII-.

. As we can see, the Pareto values are very similar to the empirical values. 

Caution! Be careful when using a regression line to estimate the parameters of Pareto 

distribution. The slope of the regression line is sensitive to the size of the largest claims, so the 

calculated distribution parameters could be significantly impacted by changes in just a few of the 

larger claim sizes. 

______________________________________________________________________________ 

 



2024 CAS Exam 8  © 2024 Rising Fellow        249 
 

III. Layers of Coverage 

Consider an excess policy written over underlying coverage (ex. umbrella, excess liability). Then, 

the policy is subject to a lower limit 𝑎 and an upper limit 𝑙. The ground-up loss 𝑥 is first 

decreased by 𝒂 and then limited by 𝒍. These claims belong the layer of coverage defined by 𝑎 and 

𝑙, where 𝑎 is the lower limit or attachment point and 𝑙 is the upper limit or width of the layer. 

The layer defined by 𝑎 and 𝑙 is sometimes denoted by the “interval” notation (𝒂, 𝒂 + 𝒍]. 

Things change slightly when considering a policy with a deductible 𝑎 and a policy limit 𝑙. Since 

the deductible is typically applied AFTER the policy limit, the insured layer is simply (𝒂, 𝒍]. The 

deductible effectively reduces the policy limit from 𝑙 to 𝑙 − 𝑎. 

______________________________________________________________________________ 

Example: Assigning Losses to Layers 

Consider two insurance policies: 

1) Personal auto policy a $3,000 policy limit and a $100 straight deductible 

2) Excess policy with a $100 attachment point and $3,000 limit 

Suppose each policy incurs the following four claims during the policy period: $50, $600, $1,800, 

and $4,000 

First, let’s assign losses to layers based on the personal auto policy: 

Layer Claim 1 Claim 2 Claim 3 Claim 4 Total 
(0, 100] 50 100 100 100 350 

(100, 3000] 0 500 1,700 2,900 5,100 
(3000, ∞) 0 0 0 1,000 1,000 

Total 50 600 1,800 4,000 6,450 
 

Since this policy has a limit and a deductible, the insured layer is (100, 3000], which is the 

bolded row above. As shown in Claim 4, we cap the loss at the policy limit first (i.e., $4,000 loss 

capped at $3,000) and then we apply the deductible (i.e., $3,000 - $100 = $2,900). In summary, 
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of the $6,450 in ground-up losses, $350 is in the deductible layer, $5,100 is in the insured layer, 

and $1,000 is in the uninsured layer. This means the insured is responsible for $350 + #1,000 = 

$1,350 of the $6,450 in ground-up losses. 

Second, let’s assign losses to layers based on the excess policy: 

Layer Claim 1 Claim 2 Claim 3 Claim 4 Total 
(0, 100] 50 100 100 100 350 

(100, 3100] 0 500 1,700 3,000 5,200 
(3100, ∞) 0 0 0 900 900 

Total 50 600 1,800 4,000 6,450 
 

Since this is an excess policy, the insured layer (100, 3100]. In this case, the insured loss is 

$5,200 instead of $5,100. 

______________________________________________________________________________ 

Now, let’s look at some theoretical results. Let 𝑋$,] be the claim size random variable in the layer 

(𝒂, 𝒂 + 𝒍]. Then, 𝑋$,] is as defined as follows: 

𝑋$,] = 1𝑋 − 𝑎, 𝑎 < 𝑋 ≤ 𝑎 + 𝑙
𝑙, 𝑋 > 𝑎 + 𝑙  

The CDF of 𝑋$,] is defined as follows: 

𝐹"!,1(𝑥) = �

0, 𝑥 < 0
𝐹"(𝑥 + 𝑎) − 𝐹"(𝑎)

1 − 𝐹"(𝑎)
, 0 ≤ 𝑥 < 𝑙

1, 𝑥 ≥ 𝑙

 

The expected value and second moment of 𝑋$,] are defined as follows: 

𝐸�𝑋$,]� = 𝐸[𝑋$; 𝑙] =
𝐸[𝑋; 𝑎 + 𝑙] − 𝐸[𝑋; 𝑎]

1 − 𝐹"(𝑎)
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𝐸�𝑋$,]& � = 𝐸[𝑋$&; 𝑙] =
𝐸[𝑋&; 𝑎 + 𝑙] − 𝐸[𝑋&; 𝑎] − 2𝑎(𝐸[𝑋; 𝑎 + 𝑙] − 𝐸[𝑋; 𝑎])

1 − 𝐹"(𝑎)
 

The expected value of 𝑋$,] is known as the layer mean for the layer that runs from 𝑎 to 𝑎 + 𝑙. 

Recall that the coefficient of variation of a random variable 𝑋 is defined as 𝐶𝑉(𝑋) = CA(")
U["]

. 

Imposing a lower or upper limit (or both) to claims results in a reduced coefficient of variation of 

the claim-size variable. 

______________________________________________________________________________ 

Example:  Layer Means and CVs 

A claim-size variable 𝑋 is lognormally distributed with parameters (µ, σ) = (5.9809,1.800). 

Given the following information at limits $3,000 and $8,000: 

Limit 𝒍 𝑭𝑿(𝒍) 𝑬[𝑿; 𝒍] 𝑬[𝑿𝟐; 𝒍] 
3,000 0.869761 891 1,853,050 
8,000 0.952557 1,276 5,774,970 
∞ 1.000000 2,000 102,134,385 

 

Consider three layers: 

• Unlimited layer that runs from (0,∞) 

• Layer that runs from (3000,∞) 

• Layer that runs from (3000, 8000) 

First, let’s compute the layer mean and CV for the unlimited layer: 

• Layer mean = 𝐸[𝑋] = U[";^]-U[";5]
.-Z#(5)

= &,555-5
.-5

= 2,000 

• 𝐸[𝑋&] = 𝐸[𝑋&;∞] = U_",;^`-U_",;5`-&(5)(U[";^]-U[";5])
.-Z#(5)

= .5&,.J[,JFE-5
.-5

= 102,134,385 

• 𝐶𝑉(𝑋) = CA(")
U["]

= aU[",]-U["],

U["]
= a.5&,.J[,JFE-&,555,

&,555
= 4.9531 
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Second, let’s compute the layer mean and CV for the layer that runs from (3000,∞): 

• Layer mean = 𝐸[𝑋J555] = 𝐸[𝑋; 3000] = U[";^]-U[";J555]
.-Z#(J555)

= &,555-FI.
.-5.FGIHG.

= 8,515 

• 𝐸[𝑋J555& ] = 𝐸[𝑋&; 3000] = U_",;^`-U_",;J555`-&(J555)(U[";^]-U[";J555])
.-Z#(J555)

=

.5&,.J[,JFE-.,FEJ,5E5-&(J555)(&,555-FI.)
.-5.FGIHG.

= 718,885,926 

• 𝐶𝑉(𝑋J555) =
CA("2000)
U["2000]

=
bU_"2000,`-U["2000],

U["2000]
= aH.F,FFE,I&G-F,E.E,

F,E.E
= 2.9858 

Third, let’s compute the layer mean and CV for the layer that runs from (3000,8000): 

• Layer mean = 𝐸�𝑋Jc,Fc� = 𝐸[𝑋Jc; 8𝐾] =
U[";Fc]-U[";Jc]

.-Z#(Jc)
= .,&HG-FI.

.-5.FGIHG.
= 2,956 

• 𝐸�𝑋Jc,Fc& � = 𝐸[𝑋Jc& ; 8𝐾] =
U_",;Fc`-U_",;Jc`-&(J555)(U[";Fc]-U[";Jc])

.-Z#(Jc)
=

E,HH[,IH5-.,FEJ,5E5-&(J555)(.,&HG-FI.)
.-5.FGIHG.

= 12,376,584 

• 𝐶𝑉]𝑋Jc,Fc^ =
CAK"23,43P
U_"23,43`

=
bU_"23,43,`-U["23],

U_"23,43`
= a.&,JHG,EF[-&,IEG,

&,IEG
= 0.6452 

As we see from the numbers above, the CV decreases as we impose additional limits on the 

claim size variable. 

Another important thing noted in this section is the difference between interval means and layer 

means. Interval means simply divide the total losses for all claims in a certain size group by the 

number of total claims in a certain size group. Layer means are computed after truncating and 

censoring losses by the corresponding lower and upper limits. See the Cookbook Recipe “Claim 

Intervals vs. Layers” for an example of the difference. 

IV. Excess Claim Counts 

Given the following: 

• 𝑁$ is the number of claims excess an underlying limit 𝑎 

• 𝑁 is the number of ground-up claims 



2024 CAS Exam 8  © 2024 Rising Fellow        253 
 

Then, we define the probability mass function for 𝑁$ as follows: 

𝑃𝑟(𝑁$ = 𝑛) = 𝑓=!(𝑛) 

= `𝑃𝑟(𝑛	𝑒𝑥𝑐𝑒𝑠𝑠	𝑐𝑙𝑎𝑖𝑚𝑠|𝑁 = 𝑘}
^

47T

⋅ 𝑃𝑟(𝑁 = 𝑘) 

= `H
𝑘
𝑛I𝑝

T(1 − 𝑝)4-T
^

47T

𝑓=(𝑘) 

where 𝑝 = 1 − 𝐹"(𝑎) and 𝑓=(𝑘) is the probability mass function for the number of ground-up 

claims 𝑁. The mass function for 𝑁$ above is derived from the fact that the number 𝑛 of excess 

claims, given the occurrence of 𝑘 ground-up claims, has a binomial distribution with parameters 

(𝑘, 𝑝). 

Bahnemann proves the following results for the expected value and variance of 𝑁$: 

𝐸[𝑁$] = 𝑝𝐸[𝑁] 

𝑉𝑎𝑟(𝑁$) = 𝑝&𝑉𝑎𝑟(𝑁) + 𝑝(1 − 𝑝)𝐸[𝑁] 

The probability mass function of 𝑁$ can be used to prove out a couple of special cases: 

• If 𝑁~𝑃𝑜𝑖𝑠(λ), then 𝑁$~𝑃𝑜𝑖𝑠(𝑝λ) 

• If 𝑁~𝑁𝑒𝑔𝐵𝑖𝑛(α, ν), then 𝑁$~𝑁𝑒𝑔𝐵𝑖𝑛(α, 𝑝ν) 

______________________________________________________________________________ 

Example: Excess Claim Counts 

Suppose that the number of ground-up claims is Poisson distributed with λ = 15 and that the 

unlimited claim-size variable 𝑋 is lognormally distributed with parameters (µ, σ) =

(5.9809,1.800). This is the same distribution from the prior example. Recall that 𝐹"(3000) =

0.869761. 

An insured has an excess policy with an attachment point of $3,000 and a limit of $8,000. 
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First, let’s calculate the expected number of claims excess of 𝑎	 = 	3,000: 

• 𝐹"(3000) = 0.869761 

• 𝑝 = 1 − 𝐹"(3000) = 1 − 0.869761 = 0.130239 

• 𝐸[𝑁] = 15 

• 𝐸[𝑁J555] = 𝑝𝐸[𝑁] = (0.130239)(15) = 1.9536 

• Notice that the upper limit is not needed here. The number of claims in the layer 

(3000,8000) is equal to the number of claims in the layer (3000,∞). The only 

difference is that any claim greater than 8,000 is capped at 8,000 

Second, let’s calculate the coefficient of variation of the number of claims excess of 𝑎	 = 	3,000: 

• 𝑉𝑎𝑟(𝑁J555) = 𝑝&𝑉𝑎𝑟(𝑁) + 𝑝(1 − 𝑝)𝐸(𝑁) = 0.130239&(15) + 0.130239(1 −

0.130239)(15) = 1.9536. We could also use the fact that 𝑁$ is Poisson distributed to 

jump straight to the answer. The variance of a Poisson distribution equals the mean of a 

Poisson distribution. Hence, 𝑉𝑎𝑟(𝑁J555) = 𝐸[𝑁J555] = 1.9536 

• 𝐶𝑉(𝑁J555) =
CA(=2000)
U[=2000]

= √..IEJG
..IEJG

= 0.715 

The CV for 𝑁 is √.E
.E

= 0.258. Thus, the CV for the excess claims is larger than the CV for the 

ground-up claims. 

______________________________________________________________________________ 

V. Inflation Effects 

Let 𝑟" be a positive rate of inflation for ground-up claim sizes. Then, we define the severity 

inflation factor τe = 1 + 𝑟". 

The impact of inflation on excess claim size depends on whether there is a lower limit only OR a 

both a lower limit and an upper limit. 
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Trended Excess Claim Size – Lower Limit Only 

The average excess claim size with a lower limit 𝑎 after trending is as follows: 

𝐸[τe𝑋$] =
τe𝐸[𝑋] − τe𝐸[𝑋; 𝑎/τ]

1 − 𝐹"(𝑎/τe)
 

The effective trend factor τ�" is defined as follows: 

𝛕�𝑿 =
𝑬[𝛕𝐗𝑿𝒂]
𝑬[𝑿𝒂]

 

= 𝛕𝐗 ⋅
𝑬[𝑿] − 𝑬[𝑿; 𝒂/𝛕𝐗]
𝑬[𝑿] − 𝑬[𝑿; 𝒂] ⋅

𝟏 − 𝑭𝑿(𝒂)
𝟏 − 𝑭𝑿(𝒂/𝛕𝐗)

 

Trended Excess Claim Size – Lower & Upper Limits 

The average excess claim size with a lower limit 𝑎 and upper limit 𝑙 after trending is as follows: 

𝐸�τe𝑋$,]� =
τe𝐸[𝑋; (𝑎 + 𝑙)/τe] − τe𝐸[𝑋; 𝑎/τe]

1 − 𝐹"(𝑎/τe)
 

The effective trend factor τ�" is defined as follows: 

𝛕�𝑿 =
𝑬�𝛕𝐗𝑿𝒂,]�
𝑬�𝑿𝒂,]�

 

= τe ⋅
𝐸[𝑋; (𝑎 + 𝑙)/𝜏"] − 𝐸[𝑋; 𝑎/τe]

𝐸[𝑋; 𝑎 + 𝑙] − 𝐸[𝑋; 𝑎] ⋅
1 − 𝐹"(𝑎)

1 − 𝐹"(𝑎/τe)
 

We can also analyze the impact of inflation on the number of excess claims.  
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Trended Excess Claim Counts 

The expected number of claims after trending are equal to 𝟏 − 𝑭𝑿(𝒂/𝛕𝑿)𝑬[𝑵]. Then, the 

effective trend factor 𝛕�𝑵 for the excess claim count due solely to claim size inflation is defined as 

follows: 

τ�= =
1 − 𝐹"(𝑎/τe)
1 − 𝐹"(𝑎)

 

We might expect, a positive severity inflation rate generally increases the excess claim count. 

If there is an underlying frequency trend as well (denoted as τZRhi), then the effective trend 

factor is 𝛕�𝑵,𝑻𝒐𝒕𝒂𝒍 = 𝛕𝑭𝒓𝒆𝒒 ⋅ 𝛕�𝑵. 

We can also study the aggregate excess losses 𝑆. Again, this depends on whether there is a lower 

limit only OR a both a lower limit and an upper limit. 

Trended Aggregate Excess Losses – Lower Limit Only 

The effective trend factor for aggregate excess losses 𝑆 = 𝑁$𝑋$	 due solely to claim size inflation 

is as follows: 

τ�C = τ"
𝐸[𝑋] − 𝐸[𝑋; 𝑎/τ"]
𝐸[𝑋] − 𝐸[𝑋; 𝑎]  

If there is an underlying frequency trend as well, then the effective trend factor 𝛕�𝑺,𝑻𝒐𝒕𝒂𝒍 = 𝛕𝑭𝒓𝒆𝒒 ⋅

𝛕�𝑺. 

Trended Aggregate Excess Losses – Lower & Upper Limits 

The effective trend factor for aggregate excess losses 𝑆 = 𝑁$𝑋$,] due solely to claim size inflation 

is as follows: 
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τ�C = τ"
𝐸[𝑋; (𝑎 + 𝑙)/τ"] − 𝐸[𝑋; 𝑎/τ"]

𝐸[𝑋; 𝑎 + 𝑙] − 𝐸[𝑋; 𝑎]  

If there is an underlying frequency trend as well, then the effective trend factor 𝛕�𝑺,𝑻𝒐𝒕𝒂𝒍 = 𝛕𝑭𝒓𝒆𝒒 ⋅

𝛕�𝑺. 

There are a couple of key relationships between τ�C and τ": 

• If τ" > 1, then τ�C ≥ τ" 

• If 𝜏" < 1, then 𝜏̃C ≤ 𝜏" 

______________________________________________________________________________ 

Example: Impact of Inflation 

Let 𝑋 be a claim-size random variable that is Pareto distributed with parameters (α, β) =

(2,3000). Suppose that the severity inflation rate for ground-up claims is 𝑟" = 10% and that the 

frequency trend for ground-up claim counts is 5%. 

An actuary wants to analyze the impact of inflation claims with an attachment point of $5,000 

and an upper limit of $4,000. 

First, let’s calculate a number of important input values: 

• τ" = 1.10 

• 𝐹"(5000) = 1 − K (
E555*(

L
,
= 1 − K J555

E555*J555
L
&
= 0.8594 

• 𝐹"(5000/τ") = 1 − K (
E555/t5*(

L
,
= 1 − K J555

E555/...5*J555
L
&
= 0.8419 

• 𝐸[𝑋; 5000] = (
,-.

M1 − K (
E555*u

L
,-.

N = J555
&-.

M1 − K J555
E555*J555

L
&-.

N = 1,875 

• 𝐸[𝑋; 5000/τ"] =
(

,-.
M1 − K (

E555/t#*u
L
,-.

N = J555
&-.

M1 − K J555
E555/...5*J555

L
&-.

N = 1,807 

• 𝐸[𝑋; 9000] = (
,-.

M1 − K (
I555*u

L
,-.

N = J555
&-.

M1 − K J555
I555*J555

L
&-.

N = 2,250 

• 𝐸[𝑋; 9000/𝜏"] =
u
+-.

M1 − K u
I555/v#*u

L
+-.

N = J555
&-.

M1 − K J555
I555/...5*J555

L
&-.

N = 2,195 
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Second, let’s study the impact of inflation on claim size: 

• 𝐸�𝑋Ec,Ic� =
U[";Ic]-U[";Ec]
.-Z#(Ec/t#)

= ...5(&,&E5)-...5(.,FHE)
.-5.FEI[

= 2,667. This is the average 

untrended claim size in the layer that runs from (5000, 9000] 

• 𝐸�τ"𝑋Ec,Ic� =
t#U[";Ic/t#]-t#U[";Ec/t#]

.-Z#(Ec/t#)
= ...5(&,.IE)-...5(.,F5H)

.-5.F[.I
= 2,699. This is the 

average trended claim size in the layer that runs from (5000, 9000] 

• The effective severity trend factor τ�" =
U_t#"63,73`
U_"63,73`

= &,GII
&,GGH

= 1.0122. Hence, the 

effective severity trend for this layer is 1.22% 

Third, let’ study the impact of inflation on excess claim counts: 

• τ�= =
.-Z#(E555/t#)
.-Z#(E555)

= .-Z#(E555/...5)
.-Z#(E555)

= .-5.F[.I
5.FEI[

= 1.1241. This is the effective trend 

factor for claim counts in this layer solely due to claim size inflation 

• τ�=,Dwx$] = τZRhi ⋅ τ�= = (1.05)(1.1241) = 1.1803. Hence, the effective trend for claim 

counts in this layer due to claim size inflation and frequency trend is 18.03% 

Fourth, let’s study the impact the impact of inflation on aggregate excess losses: 

• τ�C = 𝜏"
U[";(Ic)/v#]-U[";Ec/v#]

U[";Ic]-U[";Ec]
= (1.10) &,.IE-.,F5H

&,&E5-.,FHE
= 1.1378. This is the effective trend 

factor for aggregate excess losses in this layer solely due to claim size inflation. 

Alternatively, we could have calculated this as τ�C = τ�" ⋅ τ�= = (1.0122)(1.1241) =

1.1378 

• τ�C,Dwx$] = τZRhi ⋅ τ�C = (1.05)(1.1378) = 1.1947. This is the effective trend factor for 

aggregate excess losses in this layer due to claim size inflation and frequency trend. 

Alternatively, we could have calculated this as τ�C,Dwx$] = τ�" ⋅ τ�=,Dwx$] =

(1.0122)(1.1803) = 1.1947. Hence, the effective trend for aggregate excess losses in 

this layer due to claim size inflation and frequency trend is 19.47% 

______________________________________________________________________________ 
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VI. Aggregate Layer Claims 

Suppose that the ground-up claim counts 𝑁 has mean 𝐸[𝑁] = 	λ and contagion parameter 𝛄 

such that 𝑉𝑎𝑟(𝑁) = λ + γλ& (the contagion parameter reflects the fact the occurrence of a claim 

often leads to additional claims). Then, the layer mean and variance for the aggregate excess 

claims 𝑆 = 𝑁$𝑋$,] are as follows: 

𝐸[𝑆] = λ(𝐸[𝑋; 𝑎 + 𝑙] − 𝐸[𝑋; 𝑎]) 

𝑉𝑎𝑟(𝑠) = λ(𝐸[𝑋&; 𝑎 + 𝑙] − 𝐸[𝑋&; 𝑎]) − 2𝑎𝐸[𝑆] + γ(𝐸[𝑆])& 

______________________________________________________________________________ 

Example: Aggregate Excess Claims 

Suppose that 𝑁 is Poisson distributed with mean λ = 	15 and contagion parameter γ = 0.05. 

Further suppose that the claim-size variable 𝑋 is lognormally distributed with parameters 

(µ, σ) = (5.9809,1.800).  

Given the following information at limits $3,000 and $8,000: 

Limit 𝒍 𝑭𝑿(𝒍) 𝑬[𝑿; 𝒍] 𝑬[𝑿𝟐; 𝒍] 
3,000 0.869761 891 1,853,050 
8,000 0.952557 1,276 5,774,970 
∞ 1.000000 2,000 102,134,385 

 

First, let’s calculate the layer mean for 𝑆 for the layer than runs from (3000,8000): 

• 𝐸[𝑆] = λ(𝐸[𝑋; 𝑎 + 𝑙] − 𝐸[𝑋; 𝑎]) = 15(𝐸[𝑋; 8,000] − 𝐸[𝑋; 3,000]) = 15(1,276 −

891) = 5,775 

• The expected value of the aggregate excess loss in the layer $5,000 excess of $3,000 is 

$5,775 
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Second, let’s calculate the variance for 𝑆 for the layer than runs from (3000,8000): 

• 𝑉𝑎𝑟(𝑠) = λ(𝐸[𝑋&; 𝑎 + 𝑙] − 𝐸[𝑋&; 𝑎]) − 2𝑎𝐸[𝑆] + γ(𝐸[𝑆])& = 15(𝐸[𝑋&; 8,000] −

𝐸[𝑋&; 	3,000]) − 2(3,000)𝐸[𝑆] + (0.05)(𝐸[𝑆])& = 15(5,774,970 − 1,853,050) −

2(3,000)(5,775) + 0.05(5,775)& = 25,846,331 

______________________________________________________________________________ 

The last thing that Bahnemann mentions in this section is that the cumulative distribution 

function for 𝑆 may have large jump discontinuities at the lower end of its distribution due to the 

fact that the number of excess claim counts is often small (this is especially true for small 

portfolios). The large jumps make it more challenging to fit continuous distributions to the data. 

Fortunately, the tail of the CDF (i.e., the region of the CDF we care the most about) is typically 

more reasonable. 

 

 

 

 

 


